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Abstract

In a recent work [14] it has been shown that the statistics of price-changes on
foreign-exchange rates measured by increments can be characterized completely by
a Fokker-Planck-equation. The explicit form of this Fokker-Planck-equation was
deduced directly from empirical data. Here we show that this result does not hold
only for one specific construction of price-changes by increments but also for returns
and logarithmic-returns, which are commonly used  to quantify fluctuations in
financial time-series over different time horizons. For all these quantities (increment
and both kinds of returns) an explicit Fokker-Planck-equation is presented and a
verification of the quality of this description is shown by the reproduction of fat-tailed
probability density functions for different time scales. We propose this method as a
generalization of multifractal analysis.

1 Introduction

Financial markets are amongst the most complex systems human society has
brought up. Due to the high number of interactions between different agents, market
segments and so forth an almost arbitrary level of complexity is reached. So it is only
natural that methods from complex-system-theory and statistical sciences are more
and more used to describe the phenomena related to this kind of market [1, 2, 3, 4, 5,
6, 7].

In this article we present a comprehensive analysis of a certain market segment,
namely the foreign exchange (FX) market. We show how to model multi-scale
statistics of price-changes in the FX market. Price-changes are generally described
by means of relative changes, the so-called returns
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or by absolute changes, the so called increments
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Here s(t) denotes the time-series of FX market quotes. Please note that we chose a
physical time-scale for t in contrast to often used artificial scales like business-time or
q-time. Consequently, any change over a certain time-scale t can only be considered
for the statistics if there are actually two events s(t1) and s(t2) with the difference t2-t1
being exactly equal to t.
For the general discussion for all three price-change descriptions we use x(t, t). The
use of logarithmic and non-logarithmic quantities emerges quite naturally from two
different kinds of stochastic processes, namely those with multiplicative (return types)
and additive (incremental description) characteristics, respectively. One of the key
results, of the work presented here, is the stochastic equivalence of all three
descriptions. This is of special importance, as many models used in financial analysis
are based on return-type measures as a natural choice. We can demonstrate here,
that at least the probability density functions of changes of all three types can be
described with the same model and parameters being qualitatively equal. So from our
viewpoint, there is no need to prefer return type measures to incremental changes.
Whether this a special feature of FX rate data and might be different in the stock
market would be subject to further analysis. Very interesting results concerning the
use of different measures of change in the stock market are found in [24].

Our procedure to analyse the complexity of the FX market data is based on the idea
that there is an analogy between the financial market and fully developed turbulence,
as it was proposed by Ghashghaie et al. [11]. This analogy leads to the idea that also
the financial market is governed by cascade-like processes, connecting the price-
changes for different t. Recently it has been shown that it is possible to extract a
Fokker-Planck-equation by pure data analysis, which grasps the underlying cascade-
like process [8, 9, 14]. The use of continuous interpolation of discrete multiplicative
cascades to model financial data is presented in [10].

The central feature of the model presented here is the ability to give an equation for
the development of the probability density functions (pdf) of the price-changes with
respect to the scale t. The only assumption is the presence of Markov properties in
the stochastic process. The verification of this assumption is part of our analysis. We
show that the resulting differential equation, i.e. Fokker-Planck-equation, is able to
describe the well-known cross-over from a nearly normal pdf to strongly leptokurtic or
fat-tailed probability densities when going from large-scales to shorter ones [7]. The
description of these fat-tails is of greatest importance in various fields (c.f. [12]) as
they represent the much higher probability of extreme events compared to a
Gaussian or pure random process. One prominent example is the necessity for such
models in modern risk management.
Here, we would like to refer to the work of Silva and Yakovenko [22], who also model
the pdf of different financial data sets by means of a Fokker-Planck-equation
obtained from proper analysis of the Heston model [23]. In contrast to their work, the
analysis presented here does not rely on any specific model for the stochastic
process of the FX rates we look at and is in so far a somewhat more general concept.

The article is organized as follows: In Section 2 a summary of basic features of
Markov processes, which we use in our analysis, is presented. Section 3 is devoted
to the data analysis, namely, evidence of Markov properties is given as well as the
estimation of the Kramers-Moyal-coefficients. The verification of the quality of the
estimated Fokker-Planck-equations is given in Section 4. The article is finished by
some interpretations and discussions. All results demonstrated here are obtained



from a high-frequency data set consisting of approximately 1,4 x 106 quotes of the
German Mark – US Dollar exchange rate from October 1992 until September 1993
[20].

2 Theory of Markov processes

The concept of Markov properties is a central term in the analysis we present.
Consequently, in this Section we give a short overview of the mathematics used in
the description of the pdfs of FX data. Further details may be found in [21] and [14].
First of all, the basic quantity of a Markov process, the conditional probability is
defined as
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where p(x1,t1; x2,t2) denotes the joint probability to find the price-change x1 over the
time scale t1 and the price-change x2 over the corresponding scale t2,
simultaneously. (Note, for our investigation of the t-evolution of one price-change we
always regard this for one fixed time t. The statistics then is obtained for different
times t.) The higher order conditional probabilities are given accordingly by
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For convenience we declare that scales ti are increasing with higher indices so that
t1 < t2 < t3 … The condition for a process having Markov properties can be written as

( ) ( )2211332211 ,,,;...;,;,, tttttt xxpxxxxp nn = (6)

for all n ≥ 3. A most important consequence of (6) is that any n-point joint probability
(in our case the term “n-scale-joint-pdf” may be more appropriate) can now be
expressed by simple conditional probabilities as
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Thus, for a Markov process, the knowledge of the simple conditional probabilities
p(x,t | x0,t0) for arbitrary scales t, t0 with t < t0 is equivalent to the knowledge of any
arbitrary n-point joint probability.
Next, we discuss the presentation of Markov processes by differential equations. The
scale evolution of conditional probability densities is described by the so called
Kramers-Moyal-expansion [21]
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where the coefficients Dk [17] are defined as limits Dt Æ 0 of the conditional moments
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In general, all Kramers-Moyal-coefficients Dk are non-zero. If, however, the fourth
coefficient D4(x,t) vanishes, Pawula’s theorem [21] states that only the coefficients
D1(x,t) and D2(x,t) are non-zero. D1(x,t) is called drift-term and D2(x,t) diffusion-term.
All higher coefficients Dk with k ≥ 3 must vanish. Thus, the Kramers-Moyal-expansion
(8) reduces to a Fokker-Planck-equation of the form
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Note that the same Fokker-Planck-equation is valid for the non-conditioned
probabilities p(x,t) as can be seen by integration over the condition. The pre-factor –t

Figure 1: Contour plot of single and double conditioned probabilities (see eq. (11)) of incremental changes
i(t,t) (a) and returns r(t,t) (b) for t1=1 hour, t2 = t1 + Dt and t3 = t1 + 2Dt with Dt = 4 min. The bottom
plots are cuts through the contour plots at given lines of constant i2 and r2, respectively.

on the left side is due to the fact that we investigate a cascade from large towards
smaller scales.

3 Data analysis



3.1 Data preparation

In [14] it was found that the complexity of the analysed data set can be divided up
into two main parts. Fluctuations on time-scales t ≥ 4 min are due to a stochastic
cascade process whereas fluctuations on shorter time-scales are due to a different
noise source which is independent of the cascade-process. This short-time noise
acts like a measurement noise which is added later on to the data resulting from the
stochastic cascade-process. As was demonstrated in [14] this measurement noise
can be removed by applying a weighted moving average with a time constant of 44s
over the whole time series. The relevant stochastic features of the cascade-process
are not affected by this averaging procedure as far as our analysis is concerned.

3.2 Markov properties

In the preceding section it was stated that the only assumption necessary for the
analysis presented here is the presence of Markov properties in the data. To prove
this in a mathematically rigorous way, equation (6) needed to be verified for any
positive value of n and for all possible combinations of scales ti. This is evidently not
possible with a finite data set. As a strong hint towards Markov properties we
evaluate special conditional probabilities for the case of n=3. That is, we check the
equality
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for different combinations of the ti and the xi . For the sake of presentation (see Fig.
1), the time scales ti are fixed as well as the third price-change x3 which is held
constant at x3=0. The only remaining independent variables in (11) are x1 and x2. In
this way a graphical representation of eq. (11) is possible by means of a contour plot.
As can be seen from Fig. 1 both probabilities coincide quite well, for the increment
changes i(t,t) (a) as well as for the returns r(t,t) (b). The same behaviour is observed
for the already mentioned logarithmic-returns.

Of course this is only one singular realization of (11) but similar results are obtained
for other sets of scales ti as far as Dt remains larger than 4 minutes. So we take this
as a good hint for the validity of Markov properties in the scale behaviour of
conditional probabilities for all three types of price-changes discussed here.



Figure 2: The conditional moment M2(x,t,Dt) for fixed values of x=0 and t=1200 s. This example is
calculated from increments, the analogous behaviour is observed for return-type changes. It can be seen
that the limit for DtÆ0 can be realized by fitting the moments with a straight line towards the ordinate.

3.3 Coefficients of the Fokker-Planck-equation

The next step in estimating an analytical expression for the Fokker-Planck-equation
(10) is to compute the coefficients D1(x,t) and D2(x,t). As can be seen from eqns. (9)
and (4) this can be done by evaluating the joint probabilities ( ).,;,~ ttt xxp D-  Those
are easily obtained from the data by counting the common occurrences of the

changes x~  and x for the same times t. This enables us to estimate the conditional
moments Mk(x,t,Dt). To clarify how the limit Dt Æ 0 is mastered to obtain the
coefficients Dk(x,t) we show in Fig. 2 an example of a conditional moment M2(x,t,Dt).
This plot is representative for other scales and also for the shape of M1(x,t,Dt) and
shows that the limit can be made by a linear regression over Dt. The constant part at
Dt = 0 is then our best estimation for the Kramers-Moyal-coefficient Dk(x,t). It has
also been attempted to improve the process by fitting the moments with a power-law,
but no essential improvement can be observed by doing so. For the meaning of
higher-order corrections see the discussion in [18, 19].



Figure 3: Functional relation of the Kramers-Moyal-coefficients D1(i,t=1500s) (a) and D2(i,t=1500s) (b),
fluctuations are described in terms of increments i(t,t). It can bee seen that the drift-term D1 can be
described by a straight line through the origin while the diffusion-term D2 is best fitted with a polynomial
of degree two without a linear part.

Figure 4: Kramers-Moyal-coefficients D1(l,t=1500s) (a) and D2(l,t=1500s) (b) for logarithmic returns.
Otherwise like Fig. 3.



Figure 5: Kramers-Moyal-coefficients D1(r,t=1500s) (a) and D2(r,t=1500s) (b) for returns r(t,t). Otherwise
like Fig. 3.

In Figs. 3 – 5 the obtained coefficients for discrete time-scales t are shown as
functions of the price-changes x, i.e. for increments I(t,t), log-returns l(t,t) and returns
r(t,t). It can be clearly seen from the plots  that for all three types of price-changes
the Kramers-Moyal-coefficients can be described with a similar functional form. This
is also true for different scales t. Thus, these coefficients can be parametrized as
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The final step towards the Fokker-Planck-equation, Eq. (10), remains in finding the
functional forms of the parameters g(t), a(t) and b(t). In Fig. 6 the time-scale
dependence of these parameters is shown for all three types of price-changes. From
the figures we can see that both the slope, g(t), of D1(x,t) and the second-order term,
b(t), of D2(x,t) are approximately constant while the constant part, a(t), of D2(x,t)
obviously exhibits a clear linear dependence of the time-scale t. In a first
approximation g(t) and b(t) can be taken to be the same for all three different types
of price-changes, whereas the additive term a(t) differs for returns r(t,t).
Now, we have a complete description of the Fokker-Planck-equation (10) which
describes, as we claim, the whole evolution of the probability density function of the
changes of the observed FX rates. Also all moments are known. In the next section
we demonstrate the effectiveness of this description.

4 Reproduction of probability densities

In this section we give evidence that the Fokker-Planck-equation, we deduced from
the data set, contains all the information of the probability density functions p(x,t)



Figure 6: The dependence of the parameters a, b and g on the time scale t. The linear form of the constant
term, a, of D2(x,t) (middle row, second index (b)) is clearly seen. Both other parameters can be
approximated as constant values. The left column (first index (a)) shows the results for increments i(t,t),
the middle one (first index (b)) for log-returns l(t,t) and the one on the right (c) for returns r(t,t). Second
indices (a), (b) and (c) correspond to the three different parameters g, a and b, resp. The stochastic
equality of all three descriptions is evident.

over arbitrary time scales t. Therefore, we solve the equation numerically and
compare its solution with empirically gained pdfs on selected scales ti. For the
numerical iteration of the Fokker-Planck-equation we need a starting distribution.
Here we take the measured pdf from the time scale t = 43200s = 12 hours. These
values are fitted by a spline-function and discretized on the desired mesh. The pdfs
computed from the Fokker-Planck-equation are shown in Fig. 7 in comparison with
the empirically measured densities on the corresponding time-scales. The topmost
pdf is the starting-distribution given to the algorithm. Clearly, the Fokker-Planck-
equation is able to describe the evolution of the pdfs for all time-scales and for each
of the three types of price-changes: increments (a), logarithmic-returns (b) and also
normal returns (c). Also the cross-over to strongly fat-tailed distributions on shorter
time-scales is reproduced. This result we take as a strong hint that the cascade
Markov process is sufficiently described by a Fokker-Planck-equation and no higher-
order Kramers-Moyal-coefficients  (see Eq. 8) need to be considered.
As discussed in section 2 the same Fokker-Planck-equation is valid for any arbitrary
conditional distribution. Thus, our results also contain the information of all
conditional probability functions and thus of any n-scale joint-pdf.



Figure 7: Comparison of the numerical solutions of the obtained Fokker-Planck-equations (solid lines)
with the empirically found distributions (represented by symbols) of incremental changes, logarithmic-
returns and returns (a), (b) and (c), resp. Note that the topmost curve is a spline-fit through the empirical
data on the corresponding time-scale and is needed as starting condition for the solution of the Fokker-
Planck-equation. Obviously, the Fokker-Planck-equation is capable of reproducing the evolution over the
time-scale t of the probability density functions of all three types of price-changes. Scales vary from 12
hours (top) to six minutes (bottom). The pdfs are shifted vertically by arbitrary factors for clarity of
presentation.

5 Conclusions and Outlook

When viewed as a cascade-like process, the evolution of probability density functions
of price-changes in the exchange rate of two selected currencies obey a Markov
process. This enables us to set up a Fokker-Planck-equation to describe that
evolution continuously over the time-scale t. We demonstrated that it is possible for
different commonly used measures of FX price-changes to obtain the coefficients of
that equation by data analysis, namely the determination of conditional moments.
Further it has been demonstrated that the resulting equation is truly capable of
reproducing the measured distributions very precisely.
The method of characterization presented here offers a deeper insight into the nature
of complexity because it comprises any n-scale joint-pdf. We want to point out that
our results also contain the information from frequently used multiscaling analysis. To
show this, one has to deduce from the Fokker-Planck-equation the evolution
equation for the moments. As can be seen easily (multiplying Eq. (10) by xn and
successive partial integration of the Fokker-Planck-equation) this leads to
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which results for equation (12) in



Figure 8: Scaling exponents zn calculated from the data (open red circles) and from the reproduced PDF-
solutions of the Fokker-Planck-equation (solid black circles). The curve is our prediction according to eq.
15.
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Neglecting the term containing a(t) and taking g(t) and b(t) as constant this equation
corresponds to a multiscaling behaviour of the moments with scaling exponent zn:

† 

< xn >µtz n , z n = ng - n(n -1)b (15)

The functional form of zn with g and b from the analysis presented here is shown in
Fig. 8 compared to the actual values of the zn deduced from the solutions of the
Fokker-Planck equation (10) as well as from the empirical values. It is shown that in
the statistically significant range up to about the sixth moment, the form of the zn

could easily be taken as linear, the quadratic form that follows from (15) expresses
itself more clearly only in the higher moments with g being about an order of
magnitude larger than b. Those moments of higher order have in our opinion a very
limited signifinace due to the finiteness of the dataset.
In [14] and [13] it is stated that the parameters of the Fokker-Planck-equation and the

scaling exponent are related to b
gm 2= , where m characterizes a power-law of the

tails of the pdfs. The results obtained here are in accordance with [14]. Note that the
smallness and the errors of b may vary m between 4 and 8. This discrepancy to
accepted values of 3 to 5 may be due to the instationarity of the coefficients. A further
discussion of multifractality in Fokker-Planck dynamics is given in [15]. Note that,
actually, the parameters of the Fokker-Planck-equation, especially a(t), are partially
dependent on t so that we have a non-stationary form of that equation. This may be
taken as a hint towards the necessity of non-equlibrium descriptions as proposed in
[16].



For the multiscaling analysis only the knowledge of the unconditional pdf p(x,t) is
necessary. The description of conditional probabilities has a higher information
content than that of unconditioned ones, the difference of which we are about to
show in current works. Thus, we conclude that the stochastic analysis presented here
is more powerful than classical multiscaling or multifractal procedures. It is not only
restricted to the analysis of the complexity of foreign exchange data but may be
useful for any complex system involving multiscale properties.
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