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Abstract – Zusammenfassung vii

Abstract

Central topic of this thesis is the modelling of complex systems as stochastic
processes. In this regard, the underlying dynamics of the considered process is
described by means of effective Langevin equations. The functions for drift and
diffusion determining these equations are derived directly form a set of measured
data, based on a procedure proposed by Friedrich and Peinke.

The focus of this thesis is on the application of this procedure to experimental
data. In particular, respective disturbances are discussed that complicate a reliable
estimation of the drift and diffusion coefficients. After an introduction to the theory
forming the basis of the considered method and a critical overview over previous
examples of application, two specific applications are discussed in more detail.

The first application is the modelling of a wind turbine’s power output on the
basis of measured wind speed and power data. After a detailed characterization
of the small-scale fluctuations of atmospheric wind speed that act on the turbine,
a model for the transfer of these fluctuations to the power output is introduced
and discussed. The dynamical relaxation behaviour of the turbine is described in
terms of a set of one-dimensional Langevin equations, and the governing coefficients
are respectively reconstructed. The derived drift coefficients and, in particular, the
fixed points of the deterministic part of the dynamics reconstructed in this way
are utilized to define a dynamical power characteristic for a specific type of wind
turbine.

In a second application, the process of human postural control is analyzed with
respect to a balance experiment. Measured variations in angular velocity of a bal-
ance board on that the test subjects balance are modelled as Langevin process. It
is supposed that the reconstructed drift part reflects an intern control behaviour,
similar to the example of the wind turbine. The impact of so-called supra-postural
tasks is investigated by means of a differentiated evaluation of drift and diffusion
coefficients.
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Zusammenfassung

Zentrales Thema dieser Arbeit ist die Modellierung komplexer Systeme im Sinne
von stochastischen Prozessen. Die jeweils zugrunde liegende Dynamik wird dabei
durch effektive Langevin-Gleichungen beschrieben, und die diese Gleichungen bes-
timmenden Funktionen für Drift und Diffusion werden auf der Basis eines von
Friedrich und Peinke entwickelten Verfahrens direkt aus einem gemessenen Daten-
satz bestimmt.

Der Schwerpunkt der vorliegenden Arbeit liegt dabei auf der Anwendung der
Methode auf experimentelle Daten. Insbesondere werden entsprechende Beeinträch-
tigungen diskutiert, die eine zuverlässige Schätzung von Drift- und Diffusions-
koeffizienten verhindern. Je nach Beeinträchtigung werden verschiedene Schätz-
werte definiert und deren Abweichungen zu den intrinsischen Funktionen unter-
sucht. Nach einer Einführung in die dem Verfahren zugrunde liegende Theorie
und einem kritischen Überblick über bisher publizierte Anwendungsbeispiele wer-
den zwei Awendungen näher untersucht.

Die erste Anwendung ist die Modellierung der Leistungsabgabe einer Wind-
energieanlage auf der Basis von gemessenen Windgeschwindigkeits- und Leistungs-
daten. Nach einer detaillierten Charakterisierung der auf die Anlage einwir-
kenden kleinskaligen atmosphärischen Windfluktuationen wird ein Modell für die
Übertragung dieser Fluktuationen auf die Leistungsabgabe der Windenergieanlage
eingeführt und diskutiert. Das dynamische Relaxationsverhalten der Anlage wird
dabei durch ein System eindimensionaler Langevin-Gleichungen beschrieben und
entsprechend rekonstruiert. Die berechneten Driftkoeffizienten und insbesondere
die Fixpunkte des so ermittelten deterministischen Anteils der Dynamik werden
benutzt, um eine dynamische Leistungscharakteristik für einen speziellen Anlagen-
typ zu definieren.

In einer zweiten Anwendung wird das menschliche Gleichgewichtsverhalten
in Rahmen eines Balanzierexperiments analysiert. Die gemessenen Änderungen
der Winkelgeschwindigkeit eines Kreisels, auf dem die Testpersonen balanzieren,
werden wiederum als Langevin-Prozess modelliert. Dabei wird angenommen, dass
der rekonstruierte Driftanteil, ähnlich wie im Beispiel der Windenergieanlage, das
interne Regelungsverhalten wiedergibt. Der Einfluss sogenannter supra-postural
tasks, übergeordneter Aufgaben, die die Testpersonen auszuführen haben, wird
durch eine differenzierte Auswertung von Drift- und Diffusionskoeffizienten unter-
sucht.



Chapter 1

Introduction

1.1 Modelling variability of complex systems

Variability is such a general term that it might call up quite diverse associations.
For this thesis, I define variability by means of fluctuations or fluctuating time
series, respectively, relating the abstract term to a measurable quantity. But also
the explicit fluctuations may be defined in various different manners, depending on
the specific field of application and the more detailed framework of the respective
analysis. In this section, the range of issues from measuring fluctuations of a cer-
tain process to an appropriate modelling of the respective underlying dynamics is
covered. The term dynamics is, in this sense, related to the internal forces that
determine the characteristics of a certain system, and reflects something like an
intrinsic control behaviour in contrast to external disturbances.

To start with, the output of a measurement is often given by a fluctuating
time series x(t), where x is the observed signal and t denotes the discretization
of time. A measurement may refer to a kind of physical sampling procedure just
as well as any other kind of quantitative investigation. And the signal may be
the position of a particle but also some socio-economic data, where the units of
t range from the fraction of a second to hours, days or months. The fluctuations
of the values x reflect the variability of the investigated process and eventually
also of the underlying system. This variability may be expressed by the variance or
standard deviation of the observed time series by applying standard sample statistics
or in terms of the (auto)correlation function of the data detecting possible finite
correlations in time. A still more detailed description of the fluctuations is obtained
by revealing the dynamic equation that underlies the observed process. The basis
of such a dynamical approach is the formulation of a differential equation, e.g. in
terms of an ordinary differential equation (ODE) ξ̇(t) = f(ξ(t)), which is called a
dynamical system or the effective dynamical equation of the process. ξ(t) denotes
the state variable of the process that takes the value x(t) when measured at time
t. The right side summarizes all the forces that act or arise within the system
and therewith explains the evolution of the quantity ξ in time on the left side.
The simple first-order ODE given above may be generalized to an ODE of order
n including the n-th derivative of the variable x, that in turn can be expressed
as n-dimensional set of first-order ODEs. A simulation, i.e. an integration of the
dynamical equation gives a time series x(t). The other way round, the dynamics of
the variable ξ, i.e. ξ̇(t), can be in principle just as well reconstructed directly from
the observed time series even though this is in reality not always straightforward
and requires specific reconstruction schemes.

The latter is the objective of the field of time series analysis. This discipline
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covers methods for the characterization of an observed time series, the forecast of
its further evolution as well as the monitoring of possible systematic changes in the
corresponding dynamics. A prominent part of it is the study of nonlinear effects.
By the influence of nonlinear terms in the dynamical equations its solutions behave
not any longer in an additive way. A corresponding time series may show irregular
fluctuations though still being governed by deterministic dynamics. A sensitive
dependence on initial conditions that is associated with this kind of behaviour is
often called deterministic chaos. For an overview of the most common methods in
nonlinear time series analysis I refer to [Kantz & Schreiber 1997].

Nonlinear approaches are of particular importance for the study of complex
systems. A complex system is a system that is composed of many different subsys-
tems but shows a behaviour that cannot be described solely by the dynamics of the
single building blocks in a sufficient way. A typical property of complex systems is
the process of self-organization, i.e. the autonomous formation of certain patterns
and structures within the system. Amongst others, complex systems are e.g. found
in the field of biomechanics. To give a simple example – we are able to describe
the movement of a single particle that is exposed to well-defined external forces by
a quite simple dynamical equation, but it is considerably more difficult to capture
the influence of human coordination and control which can be considered as a com-
plex structure. Complex structures are formed as the result of very complicated,
nonlinear and often only insufficiently known interactions.

The probably most adequate description of complex systems is given by Haken’s
synergetics approach [Haken 1983]. Haken found that the dynamics of a wide range
of complex systems takes place on different time scales that can be separated adi-
abatically. In this case, the degrees of freedom of the system can be reduced to a
small number of order parameters whose evolution is described by stochastic differ-
ential equations. The order parameters dominate the macroscopic dynamics of the
system while the microscopic degrees of freedom appear only as fluctuating forces,
i.e. a kind of noise, in the dynamical equation.

Haken’s explicit considerations about different time scales motivate the intro-
duction of stochastic processes for the modelling of the fluctuations of a complex
system. The formulation of a dynamical equation that incorporates deterministic
as well as stochastic terms corresponds to a separation of internal and external
forces for an open system. The stochastic terms sum up the external forces without
giving a detailed description of the single components. I do not want to go into
detail about the question if this stochasticity is a necessary component or rather a
rough simplification. This definitely depends on the specific application, the actual
complexity of the considered system, as well as on the objective of the respective
procedure of data analysis.

In order to describe stochastic aspects, a couple of different theoretical concepts
can be considered. In this thesis, however, I focus on the formulation of stochastic
processes in terms of diffusion equations given by stochastic first-order differential
equations in time. For the variable ξ(t) defining the state of the dynamical sys-
tem, let h(ξ, t) denote a force acting on the system at time t when ξ(t) equals x.
Considering a second function g that acts together with a noise term Γ(t) as stochas-
tic force and assuming Γ(t) to define Gaussian distributed δ-correlated white noise,
the stochastic evolution equation of ξ(t) is given by the so-called Langevin equation

d

dt
ξ(t) = h(ξ, t) + g(ξ, t) Γ(t) . (1.1)

For this class of processes it is known how to reconstruct the functions h and
g directly from measured data without any further knowledge about the internal
dynamics of the considered system. This procedure is called stochastic modelling.
The fundamental mathematical concept has been formulated in [Kolmogorov 1931].
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Its application, i.e. a respective method of reconstruction, has been introduced in
[Siegert et al 1998]. During the last years, this scheme has been applied to a large
variety of problems and disciplines, among them many processes that are considered
to stem from complex systems. In the following sections of this introduction, I firstly
give a short outline of the theory of Langevin processes and its reconstruction
before I discuss the central issues for an appropriate application of the method
to experimental data and how the Langevin model is extended to more general
processes.

1.2 Reconstructing the dynamics of Langevin pro-
cesses 1

For a multidimensional stochastic state variable ξ the general Langevin equations
have the form

ξ̇i = hi(ξ, t) +
∑
j

gij(ξ, t)Γj(t) (1.2)

for each component i. The functions hi and gij may be arbitrary nonlinear functions
of the components ξi and the time t. For constant gij , (1.2) is called Langevin
equation with additive noise force, and accordingly with a multiplicative noise force
for the functions gij depending on ξ. The Langevin force Γ(t) corresponds to
Gaussian distributed and δ-correlated stochastic variables with vanishing mean and
a variance that equals 2, i.e.

〈Γ(t)〉 = 0, 〈Γi(t)Γj(t′)〉 = 2δijδ(t− t′). (1.3)

The δ-correlation of Γ(t) provides that Langevin processes are Markov processes,
i.e. the future state of the system does only depend on its present state but not on
the states in the past. For Markov processes the multiple conditioned probabilities
reduce to simple conditioned probabilities according to

p(xi+1, ti+1|xi, ti; ...; x0, t0) = p(xi+1, ti+1|xi, ti), (1.4)

and the joint probability distribution p(xn, tn; ...; x1, t1; x0, t0) can be constructed
from the knowledge of the conditional probability distributions p(xi+1, ti+1|xi, ti).
I come back to these properties later.

Writing down the differential equation (1.2), this equation is expected to be
integrable. But due to the properties (1.3) of Γ(t) it does not obey ordinary
differential calculus. A common physical interpretation is to replace the δ-function
by a function with very small finite width. The more mathematical way to obtain
a consistent interpretation is to write (1.2) as integral equation according to

ξ(t+ τ) = ξ(t) +
∫ t+τ

t

dt′h(ξ, t′) +
∫ t+τ

t

dt′g(ξ, t′)Γj(t′) (1.5)

and introduce the relation

dWj(t) ≡Wj(t+ dt)−Wj(t) = Γj(t)dt (1.6)

where W (t) is a Wiener process. The main difficulty is now to define the integral∫
G(t′)dW (t′) for an arbitrary function G(t). There are two common definitions

in the literature, the one according to Itô and that by Stratonovich. For this
thesis I restrict my considerations to the interpretation by Itô that especially shows

1The reasoning of this section basically follows the proceeding of [Risken 1989], and also con-
ventions that may differ in other references are taken over from here.
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advantages for the numerical integration of the stochastic differential equations. In
this case and by the use of a simple Euler scheme for the integration of the functions
hi, (1.2) reads in a discrete formulation

ξi(t+ τ) = ξi(t) + τhi(ξ(t), t) +
∑
j

√
τgij(ξ(t), t)Γj(t). (1.7)

To exhibit a scheme for the reconstruction of the functions hi and gij from a
set of experimental data, the connection between the Langevin equations for the
trajectories of a stochastic process and the corresponding Fokker-Planck equation
for the statistical properties of these trajectories is shown. Following [Risken 1989],
as first step the conditional moments

M (n)(x, t, τ) := 〈[ξ(t+ τ)− ξ(t)]n|ξ(t) = x〉 (1.8)

=
∫
dx′[x′ − x]n p(x′, t+ τ |x, t) (1.9)

are introduced. The products [...]n refer to a dyadic multiplication, i.e. the objects
M (n)(x, t, τ) may be vectors, matrices or tensors, dependent on the order n and the
dimensionality of x or ξ, respectively. The conditioning in (1.8) means that only the
values that fulfil ξ(t) = x are considered for the calculation of the average. On the
basis of the conditional moments, as a second step, the Kramers-Moyal coefficients
are defined according to

D(n)(x, t) :=
1
n!

lim
τ→0

1
τ
M (n)(x, t, τ). (1.10)

The convergence of the limits is presumed here. By means of the Kramers-Moyal
coefficients, the time evolution of a probability distribution function (pdf) p(x, t)
can be described by formulating the partial differential equation

∂

∂t
p(x, t) =

{ ∞∑
n=1

(−∇)nD(n)(x, t)
}
p(x, t). (1.11)

For a general process this expansion may consist of an infinite number of terms.
But for a process that follows a Langevin equation this so-called Kramers-Moyal
expansion is truncated after the second term on the right side and reduced to the
Fokker-Planck equation

∂

∂t
p(x, t) =

{
−
∑
i

∂

∂xi
D

(1)
i (x, t) +

∑
ij

∂2

∂xixj
D

(2)
ij (x, t)

}
p(x, t). (1.12)

Note that the Fokker-Planck equation can be formulated in an analogous way for
the conditional probability p(x, t+ τ |x′, t).
Following again [Risken 1989], one directly obtains by utilizing the properties of
Γ(t) the relations

D
(1)
i (x, t) = hi(x, t), D

(2)
ij (x, t) =

∑
k

gik(x, t)gjk(x, t), (1.13)

D(n)(x, t) = 0 ∀ n ≥ 3 . (1.14)

In several references, it is also referred to the theorem of Pawula at this point.
According to Pawula’s theorem all coefficients D(n)(x, t) for n ≥ 3 vanish if
D(n=4)(x, t) = 0 holds. The latter condition is fulfilled if the noise included in
the considered process is Gaussian distributed – which is just one of the basic
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requirements for the noise source Γ(t) in (1.2) and the respective dynamics to
follow a Langevin process.

For a Langevin process, the functions D(n)(x, t) (n = 1, 2) are referred to as
drift and diffusion coefficients, respectively, and can be interpreted in the following
way. For a trajectory that passes the point x at time t, D(1)(x, t) gives the average
trend of movement and D(2)(x, t) the corresponding variance. I.e. the distribution
of the points x(t+ τ) for all t with ξ(t) = x, which the trajectory passes after the
time increment τ , is given by a Gaussian distribution with mean x(t) + τD(1)(x, t)
and variance 2τD(2)(x, t).

In principle, it is now straightforward to reconstruct drift and diffusion coef-
ficients, and therewith an effective Langevin equation, for a set of experimental
data. One simply has to calculate the conditional moments and subsequently the
Kramers-Moyal coefficients according to (1.8–1.10). How this is realized for differ-
ent applications and especially which difficulties may arise is presented in the next
section. To simplify matters, I no longer make a difference between the stochastic
state variable ξ and its value x from now on, and write (1.2) equivalently as

ẋi = D
(1)
i (x, t) +

∑
j

D
(2)
ij (x, t)Γj(t) . (1.15)

1.3 Stochastic modelling of experimental data

Since its introduction in [Siegert et al 1998], the above presented formalism of
estimating drift and diffusion coefficients directly from a set of experimental data
has been applied to a wide range of more or less physical systems. In the re-
view [Friedrich et al 2008], these applications are basically divided into the two
categories of complexity in time and complexity in scale. In the first case, one
faces the analysis of temporal disorder and for the second case one considers dis-
order in scale that is often linked to a fractal scaling bahaviour. Such a scal-
ing behaviour is found in turbulent flows as well as in financial data (see e.g.
[Renner 2002]). A further example for the investigation of complexity in scale is
the analysis of surface roughnesses as described in [Wächter et al 2004]. In this
thesis, I do not further address the issue of complexity in scale in more detail but
concentrate on the issue of complexity in time. The study of complexity in time
has covered so far an even wider range of applications including the analysis of
human movement [Friedrich et al 2000, Frank et al 2006, Van Mourik et al 2006],
biological data as heart-rate fluctuations [Kuusela et al 2003, Ghasemi et al 2005,
Tabar et al 2006] and brain dynamics [Prusseit & Lehnertz 2007], the modelling of
electronic circuits [Friedrich et al 2000, Stemler et al 2007], diverse price dynam-
ics [Ghasemi et al 2007, Farahpour et al 2007] as well as pattern formation in the
broadest sense like ocean variability and sea surface winds [Sura & Gille 2003,
Lind et al 2005], the dynamics of traffic flow [Kriso et al 2002] and the segregation
bahaviour of granular material [Kern et al 2005].

The data that is considered for the analysis most often corresponds to a simple
discrete time series of the measured physical quantity. In some cases, however, the
reconstruction procedure is applied to a modified time series as defined e.g. by the
returns or the increments of the sampled data to overcome the problem of non-
stationarity of the respective data set (cf. [Tabar et al 2006, Ghasemi et al 2007]).
The stationarity of the data that is analyzed is a basic requirement of the modelling
approach.

The general procedure of the above mentioned and similar applications consists
of three steps. The first step is to verify the properties that are necessary, beside the
stationarity of the data set, for the data to be modelled as a Langevin process. The
second step is the actual estimation of the drift and diffusion coefficients. Eventually,
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the last step is a kind of self-consistency check, comparing the statistical properties
of the data that is simulated on the basis of the reconstructed effective Langevin
equation with the original empirical data to verify the estimated coefficients. Not
all of the listed applications actually follow this scheme but it can be seen as a
general recommendation.

For the first step, the Markov property of the considered process as well as
the condition D(4)(x, t) = 0 have to be verified. The most straightforward way
to show the Markov property for a certain set of experimental data is to directly
evaluate its definition (1.4). Due to the finite amount of data points, the multi-
ple conditioning on the left side is usually reduced to only two conditions. The
corresponding double conditioned pdf is compared to the single conditioned pdf
on the right side either by visual comparison or by means of a statistical test (cf.
[Renner 2002, Wächter et al 2004]). Another method to verify Markov properties
is to show the validity of the Chapman-Kolmogorov equation

p(xj , tj |xi) =
∫
dxk p(xj , tj |xk, tk) p(xk, tk|xi, ti) (1.16)

which is a direct consequence of (1.4). In [Friedrich et al 1998], the validity of this
equation is utilized to define a length scale lmar, in later publications referred to as
Markov length scale, that defines the smallest time scale with respect to that the pro-
cess can be shown to be a Markov process. As presented e.g. in [Tabar et al 2007],
this length scale may also be utilized as a critical quantity to characterize a cer-
tain process and to identify characteristic changes in its behaviour. A third way
to investigate the Markov property of a set of experimental data is to firstly derive
the underlying effective Langevin equation according to (1.10) and then reconstruct
the noise process Γ(t) and inspect its properties. This indirect approach is espe-
cially a good alternative for short data sets since no conditioning is necessary (see
e.g. [Kern et al 2005] for an application). If a process does not fulfil the Markov
property, it can be turned into a Markov process by introducing new variables
and hereby increasing the dimensionality of the stochastic state variable (cf.
[Risken 1989]).

An essential point for the estimation of the Kramers-Moyal coefficients is the
performance of the limit limτ→0M

(n)(x, t, τ)/τ in (1.10). A common procedure is
to evaluate the conditional moments for the smallest available finite time step τ and
then extrapolate them to τ = 0 – as explicitly stated e.g. in [Friedrich et al 2000]
and [Prusseit & Lehnertz 2007]. For the most other applications that are listed
above no comment concerning this point is found. But I assume that, in a majority
of cases, a linear extrapolation is performed likewise. In [Sura & Barsugli 2002],
however, it is argued that such an extrapolation may lead to systematic errors for
the drift and diffusion coefficients. To avoid these deviations, the coefficients should
be evaluated on the basis of an Itô-Taylor expansion for the conditional moments. In
[Kleinhans et al 2005], this argument is taken up, and an iterative procedure for the
estimation of drift and diffusion coefficients is proposed by adjusting the estimates
iteratively to the conditional pdf of the empirical data by the use of the correspond-
ing Kullback-Leibler distance between the empirical and the reconstructed pdfs. In
Chapter 2 of this thesis, I resume this discussion and propose an alternative, more
direct, approach to optimize drift and diffusion estimates.

A general question is to what extent the theoretical model of a Langevin process
actually describes the process under investigation. What I want to point out here is
that corresponding deviations and restrictions do not mean that the presented re-
construction scheme is completely useless for the characterization of the considered
process. In [Siefert & Peinke], it is e.g. shown that even if the stochastic variable
Γ(t) in a stochastic differential equation as defined by (1.2) or (1.15), respectively,
refers to neither Gaussian distributed nor δ-correlated noise, the function D(1)(x, t)
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describing the deterministic part of the dynamics can be reconstructed correctly.
The corresponding stochastic differential equation should not be called Langevin
equation in this case, and it is not clear how to define a diffusion in this context.
Nevertheless, this result is promising. The self-consistency test, proposed as verifi-
cation of the estimated coefficients, however looses in this case its significance. In
the same way, the validation of the Markov properties is no longer a pre-condition
for the modelling procedure. The Langevin approach can be extended even further
by concentrating not on the entire deterministic dynamics but reduce the analysis
to the fixed points of the dynamics. This issue is discussed in Chapter 3 of this
thesis.

A point that I have not discussed so far is the impact of external measurement
noise on the reconstruction procedure. In contrast to dynamical noise that directly
interferes with the deterministic dynamics as defined in the Langevin equation,
measurement noise is so to say subsequently superimposed on the dynamics. In
[Renner et al 2001], [Siefert et al 2003] and [Böttcher et al 2006], it is shown how
the presence of measurement noise is expressed in the conditional moments of the
disturbed data and how the intrinsic drift and diffusion coefficients can in principle
be reconstructed utilizing this information. At this, a filtering of the data prior to
the analysis is not necessary but the external noise is extracted within the procedure
of reconstruction. I pick up this issue in Chapter 2 of this thesis with a further
development of the procedure proposed in [Böttcher et al 2006].

In [Kleinhans et al 2007], it is shown that measurement noise may spoil the
Markov properties of an underlying Markov process. With this result in mind, a
failed Markov test needn’t mean that the process under investigation cannot be
described as a Langevin process and the presented method of reconstruction cannot
be applied in the strict sense. Therefore, the verification of Markov properties as
first step of the analysis must be considered also here carefully.

1.4 Extension to Langevin-like processes

As already indicated, the Langevin approach may give a framework for more general
or in some way modified stochastic processes. In this section, I want to give three
specific examples for such Langevin-like processes and how their dynamics can be
reconstructed.

The first example is the modelling of nonlinear Lévy processes as described in
[Siegert & Friedrich 2001]. Writing (1.2) in the differential form

dξ(t) = g(ξ, t)dt+ h(ξ, t)dW (t) (1.17)

and replacing the Langevin force by the more general Lévy noise, the differential
equation

dξ(t) = g(ξ, t)dt+ h(ξ, t)dL(γ,β,µ)
α (1.18)

is obtained where dL(γ,β,µ)
α stands for an infinitesimal α-stable Lévy motion with

(dL(γ,β,µ)
α )i = (fγ,β,µα )i(t)dt. (1.19)

The components (fγ,β,µα )i of the Lévy noise are assumed to be stochastically inde-
pendent and characterized by the Lévy stability parameter α, the scale parameter
γ, the skewness β and the center µ. The Langevin equation (1.17) is a special case of
(1.18) for α = 2, γ = 0.5 and β = µ = 0. For simplicity, in [Siegert & Friedrich 2001]
a model is assumed in which the components (fγ,β,µα )i are no longer necessar-
ily stochastically independent and h(ξ, t) is replaced by a function h̃(ξ, t) with
h̃ij(ξ, t) = h̃ii(ξ, t)δij and h̃ii > 0, i.e. neglecting cross correlations between the sin-
gle noise components. Considering furthermore a Lévy noise with γ = 1, β = µ = 0
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and α ∈ (1, 2], g(x) can be reconstructed similarly as for a Langevin process by
calculating the first conditional moments and performing the limit limτ→0(...)/τ .
To reconstruct the stochastic part of the process, firstly α has to be estimated and
then the components h̃ii(x) can be derived in a straightforward way, having in mind
that the noise force of a general Lévy process scales with τ1/α. Thus, the presented
method of reconstructing drift and diffusion is extended to processes with more
general noise sources without the need for a totally new approach.

The second example I want to focus on is the class of stochastic delay processes,
i.e. processes that are described by a time-delayed state variable, as discussed e.g
in [Frank et al 2003, Frank et al 2004]. Dynamical processes involving time delays
are particularly found in biological systems that exhibit time-delayed control mech-
anisms arising due to the transport of matter, energy and information with finite
propagation velocities. A general description for this class of systems is given by
the stochastic differential equation

ξ̇(t) = h(ξ, ξτ , t) + g(ξ, ξτ )Γ(t) (1.20)

where ξτ denotes the time-delayed state variable ξτ (t) ≡ ξ(t − τ). To simplify
matters, ξ and ξτ are assumed to be one-dimensional variables. Γ(t) is defined as
Langevin force corresponding to Gaussian distributed and δ-correlated white noise.
Due to considering delayed and non-delayed state variables at the same time, (1.20)
does not describe a Markov process. To treat a stochastic delay process, however, in
the same way as a Langevin process and apply the presented reconstruction scheme,
it can be formulated as a multivariate process without delay. This approach is called
method of steps (cf. [Frank et al 2003]). The conclusion to express univariate non-
Markovian processes in terms of multivariate Markov processes is in line with the
already mentioned fact that non-Markovian processes can be expressed in terms of
Markov processes by introducing new state variables.

As last example for a Langevin-like process, I want to mention the effective
potential model for the price dynamics of a stock that is introduced and discussed
in [Alfi et al 2007]. Here, it is proposed that price dynamics can be described by
the model

P (t+ 1) = P (t)− b(t) d

dP (t)
Φ(P (t)− PM (t)) + ω(t), (1.21)

i.e. in terms of a stochastic process that includes a deterministic force with respect
to the moving average PM (t) of the considered prize variable. ω(t) is assumed to
be a random noise with unitary variance and zero mean similar to a Langevin force
but without requiring the Gaussian distribution explicitly. The potential Φ together
with the pre-factor b(t) describes the interaction between the prize and its moving
average. In the simple assumption of a linear force, Φ results to be a quadratic
function according to

Φ(P (t)− PM(t)) = (P (t)− PM (t))2. (1.22)

Different regimes of the prize dynamics of a certain stock are characterized in terms
of an attractive or repulsive behaviour depending on the sign of b(t) in each case.
The deterministic force in (1.21) is reconstructed in a similar way as the drift
coefficient for the Langevin approach though clearly not describing the deterministic
part of an actual Langevin process. The stochastic part of the equation is not further
considered. This example again illustrates that one does not have to require Markov
properties to reconstruct the deterministic dynamics of a stochastic process utilizing
the Langevin approach or at least a procedure that is adjusted to this approach.

These three examples once again point out that the approach of the stochastic
modelling, I refer to in this thesis, may be applied to a wide range of different
systems, and that the respective description as a Langevin or Langevin-like process
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may be understood as a practical framework rather than as an ultimate restriction.
In the following, I utilize this framework to analyze and evaluate the data of two
specific experimental applications, dealing at the same time with the general aspect
of the applicability of the introduced concepts.

1.5 Outline of this thesis

This thesis deals with the modelling of complex systems in terms of stochastic
processes that are described by effective Langevin equations. In particular, it is
focused on the aspect of application and the respective procedure of reconstruction
is illustrated by means of two different examples. Hereby, I concentrate not only on
utilizing the technical procedure of applying the theoretical concept to a certain set
of experimental data but also investigate in a more general framework an evaluation
of applicability. At this, I discuss in detail the discrepancies between the observed
dynamical behaviour for a specific application and the ideal dynamics that is defined
by the corresponding well-defined Langevin process assumed as theoretical basis.

The thesis is partly written in a cumulative way, including three publications
that have been in a slightly modified version already published in or, respectively,
submitted to an international scientific journal. In detail, it is organized as follows.

Chapter 1 has given a general outline of the used method of reconstruction
and an overview of a large variety of different applications. In Chapter 2, I deal
with the question how drift and diffusions estimates, that may define an effective
Langevin equation, can be derived for processes that are sampled with only a low
resolution and/or affected by additional measurement noise. In particular, it is
shown how these estimates differ from the intrinsic drift and diffusion functions
that determine the actual dynamics of the considered process. Special attention is,
in this connection, paid to the reconstruction of fixed points as characteristic states
for a certain process. This discussion is resumed in the context of the utilization of
a stochastic fixed-point analysis in Chapter 3. The results of Chapter 2 form the
theoretical or rather methodic main part of this thesis whereas Chapter 3 and 4 deal
with specific applications. In Chapter 3, I introduce on the basis of a theoretical
Langevin model a phenomenological approach to the modelling of a wind turbine’s
power performance. Particular attention is paid to the description of turbulent
structures in wind speed and respective power output time series, forming a self-
contained section, as well as to the definition of a stochastic fixed-point analysis
as characterization of a certain process. As a second application, Chapter 4 deals
with the stochastic modelling of human postural control. With this example, I
especially show how the presented reconstruction scheme can be adapted to quite
short data sets. Chapter 5 completes this thesis with a summary of the main results
and respective final remarks.

A bibliography and an optional set of appendices are given after each chapter,
corresponding to the cumulative organization of this thesis.



10 Introduction

Bibliography

[Alfi et al 2007] V. Alfi, A. De Martino, L. Pietronero, and A. Tedeschi: Detecting
the traders’ strategies in minority-majority games and real stock-prices. In:
Physica A 382, 1–8 (2007).
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Chapter 2

On the definition and
handling of different drift
and diffusion estimates 1

A previously devised approach for the reconstruction of Langevin
processes from given data is revised with respect to disturbances stem-
ming from finite sampling rates and the presence of external measure-
ment noise. For these two cases and a combination of both three differ-
ent estimates for the drift and diffusion functions are introduced, and
an optimization procedure is presented that allows the reconstruction of
the intrinsic functions from these estimates. Special attention is paid to
the reconstruction of deterministic fixed points defining the character-
istic behaviour of a process, and its robustness against the considered
disturbing effects.

2.1 Introduction

Complex dynamical systems appear in various scientific disciplines, and a suitable
mathematical description is often of central interest. Revealing the process dynam-
ics is realized by reconstructing the corresponding dynamical equations and finding
a model for the dynamics of the studied systems. Prior to the reconstruction,
the analysis is usually constrained to a special class of processes. A fundamental
distinctive feature is e.g. whether one applies a deterministic or a stochastic frame-
work. Observed complex fluctuations can thus be traced back either to a chaotic
behaviour or the effect of dynamical noise. A more flexible approach is to combine
both features and analyze a system in terms of general stochastic processes.

Here, we consider the class of Langevin processes, i.e. stochastic processes that
are assumed to be Markovian and described in terms of drift and diffusion. At this,
we only consider autonomous processes, i.e. the corresponding governing coefficients
are explicitly not time-dependent. A one-dimensional Langevin process is thus given
by the stochastic first-order differential equation

ẋ(t) = D(1)(x) +
√
D(2)(x) Γ(t) (2.1)

(also called Langevin equation). Even though we restrict our discussion here to
the one-dimensional case, it is straightforward to extend the argumentation to

1Published as J. Gottschall and J. Peinke: On the definition and handling of different drift
and diffusion estimates. In: New Journal of Physics 10, 083034 (2008).



14 2. Definition and handling of different drift and diffusion estimates

higher dimensional processes. The term D(1)(x) is named drift coefficient and
reflects the deterministic part of the dynamics. The stochastic part is given by
the Langevin force Γ(t), representing Gaussian white noise with 〈Γ(t)〉 = 0 and
〈Γ(t1)Γ(t2)〉 = 2δ(t1−t2) (following the convention in [Risken 1989]), and the square
root of the diffusion coefficient D(2)(x), fixing the amplitude of the stochastic fluctu-
ations. Throughout the paper, we apply Itô’s interpretation of stochastic integrals.2

Equation (2.1) is directly connected to the Fokker-Planck equation

∂

∂t
p(x, t) =

[
− ∂

∂x
D(1)(x) +

1
2
∂2

∂x2
D(2)(x)

]
p(x, t), (2.2)

describing the process in probability space.
In recent years, a method has been introduced to reconstruct the coeffi-

cients D(n)(x) (n = 1, 2) directly from a measured time series [Siegert et al 1998,
Friedrich & Peinke 1997, Ryskin 1997, Friedrich et al 2000]. As initially proposed
by Siegert et al., drift and diffusion coefficient can be derived according to

D(n)(x) =
1
n!

lim
τ→0

1
τ
M (n)(x, τ) (2.3)

with the first (n = 1) and second (n = 2) conditional moment, respectively, defined
by

M (n)(x, τ) := 〈[x(t+ τ)− x(t)]n〉 |x(t)=x. (2.4)

For an ideal time series, i.e. a time series x(t) that is generated by a process given
by (2.1) and sampled over a sufficiently long time period and with a sufficiently high
resolution, the process dynamics can be perfectly reconstructed by (2.3) and (2.4).
For real data sets, however, the method of reconstruction must be revised with
respect to several kinds of aspects – three of them are discussed in the following.

An observed time series x(t) is defined by a finite sampling rate. Thus, the
continuous process given by (2.1) is reduced to a series of discrete points separated
by the time increment τ0 corresponding to the inverse sampling rate, and informa-
tion from smaller time scales is ignored (see figures 2.1(a)–(b)). Equation (2.1) is
replaced by the discrete equation

x(t+ τ) = x(t) + τD(1)(x) +
√
τD(2)(x)Γ′(t), (2.5)

where the Γ′(t) correspond to independent Gaussian-distributed random numbers
with zero mean and variance 2. Applying a conditional ensemble average and using
the properties of Γ′(t) specified above, we obtain as finite-τ approximations

M (1)(x, τ) ≈ τD(1)(x), (2.6)
M (2)(x, τ) ≈ 2τD(2)(x) + τ2(D(1)(x))2. (2.7)

That is, M (2)(x, τ) is modified by a correction term that is quadratic in D(1)(x) and
τ and that vanishes in the limit τ → 0. In [Friedrich et al 2002] it is shown that ad-
ditional terms for M (2)(x, τ) as well as for M (1)(x, τ) are obtained when deriving the
τ -dependence of the conditional moments directly from the Fokker-Planck equation.
For the approximations (2.6) and (2.7), however, a simplified transition probability
is assumed (cf. [Ragwitz & Kantz 2001]). Ignoring any O(τ2)-corrections and using
the simple relation D(n)(x) = M (n)(x, τ0)/(n!τ0) for the analysis of non-ideal data,

2It is just as well possible to reformulate the approach using other interpretations of stochastic
integrals, for instance Stratonovich’s definition (cf. [Risken 1989]). Applying this definition, the
drift coefficient is altered by an additional term, the spurious drift, and the reconstruction scheme
is adapted correspondingly. But in total we do not expect to obtain fundamentally new insights.
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Figure 2.1: Time series of an exemplary stochastic process (Ornstein-Uhlenbeck process
as defined below) – (a) sampled with τ0 = 10−3, (b) τ0 = 0.2, and (c) superimposed by
measurement noise (σ = 0.5, τ0 = 10−3).

the empirical estimates may significantly differ from the intrinsic functions D(n)(x)
(n = 1, 2) (cf. [Sura & Barsugli 2002]).

Similar deviations are observed when the time series x(t) is superimposed by
external measurement noise – see figure 2.1(c). The respective correction terms can
be derived likewise, as presented in [Böttcher et al 2006]. It is important to note
that in both cases, for a not sufficiently high resolution as well as in the presence
of external noise, the actual dynamics of the considered Langevin process is merely
hidden but not destroyed. The challenge is to define corresponding estimates that
are adjusted to the individual disturbances and to interpret the respective results in
an appropriate way, or to introduce an appropriate optimization scheme that allows
to reconstruct the intrinsic functions from the estimates.

The situation is a bit different, and this is the third aspect we address, if the
requirement of the Markov property for the process given by x(t) is not strictly
fulfilled. Following [Risken 1989], this is the case if the stochastic force Γ(t) in (2.1)
does not correspond to Gaussian distributed and especially δ-correlated white noise.
For such non-Markovian processes, (2.3) and (2.4) can still be used to reconstruct
the deterministic part of the process dynamics. Experimental evidence has been
presented in [Siefert & Peinke 2004] where the authors reconstructed the drift co-
efficient D(1)(x) properly according to (2.3) for noise sources that are not Langevin
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forces and especially not δ-correlated.
Allowing explicitly the non-Markovianity and non-Gaussianity of the noise

source, the presented reconstruction scheme can be extended to a broader class
of processes while its relevance is reduced to the deterministic part of the dynamics.
A further extension, associated with a further reduction of significance, is achieved
by considering not the entire deterministic dynamics of the process but just focusing
on its characteristic or say global behaviour. For instance, it might be interesting to
reconstruct only the deterministic fixed points xFP of an observed process. These
are defined by

D(1)(xFP) ≡ 0. (2.8)

The derivative of D(1)(x) in the neighbourhood of xFP determines the type of local
stability. For a stable fixed point (D(1)(x))′|x=xFP is negative, for an unstable fixed
point positive. A respective application is given in [Anahua et al 2008]. Here, the
characteristic power curve of a wind turbine, i.e. the curve of steady states of power
output for certain wind speeds, is determined by reconstructing the determinis-
tic fixed points of the process binned according to the speed. We could show in
[Gottschall & Peinke 2008] that the fixed points are more appropriate to character-
ize the power performance of the wind turbine system than maxima or mean values
which are commonly used in the standard procedures. The question however arises
how robust fixed points are against spoilings like the presence of external noise and
finite sampling rates. An answer will be given at the end of this chapter. Further
applications are given in [Kriso et al 2002] and [Kern et al 2005] where the authors
analyzed traffic flows and the segregation dynamics in avalanches, respectively, with
similar approaches.

This chapter is arranged as follows. Subsequent to this introduction, we give
an overview of the finite time and measurement noise corrections introduced in
[Ragwitz & Kantz 2001] and [Böttcher et al 2006], respectively. In section 2.4 we
compare both effects with each other, define distinctive features and introduce a
scheme to combine them. Thereby, we develop three different estimates that are
utilized for an optimized reconstruction of the intrinsic functions in section 2.5
and discussed with respect to their significance, especially with regard to a proper
reconstruction of fixed points, in section 2.6. We conclude with section 2.7 which
summarizes the main results.

2.2 Definition of drift and diffusion estimates
adapted to finite sampling rates

As annotated in [Ragwitz & Kantz 2001], the estimation of drift and diffusion co-
efficients for experimental data generally suffers from finite sampling rates, i.e. a
finite time increment τ0. In [Friedrich et al 2002] respective corrections are intro-
duced by deriving exact expressions for the conditional moments up to a specified
order of τ from the Fokker-Planck equation. In the following, we summarize these
considerations before interpreting and applying the results.

The conditional moments M (n)(x, τ) (n = 1, 2), as defined in (2.4), are formu-
lated according to

〈[x(t+ τ)− x(t)]n〉 |x(t)=x =
∫
dx (x− x′)n p(x, t+ τ |x′, t) (2.9)

in terms of the conditional probability density function (pdf) p(x, t+ τ |x′, t). This
conditional pdf is the solution of the Fokker-Planck equation

∂

∂t
p(x, t+ τ |x′, t) = L̂p(x, t+ τ |x′, t) (2.10)
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with the Fokker-Planck operator

L̂ = − ∂

∂x
D(1) +

∂2

∂x2
D(2). (2.11)

The formal solution of (2.10) reads

p(x, t+ τ |x′, t) = exp[L̂τ ]δ(x− x′). (2.12)

Expanding it in a stochastic Itô-Taylor series yields

p(x, t+ τ |x′, t) =
∞∑
k=0

(L̂τ)k

k!
δ(x− x′) (2.13)

(cf. [Risken 1989]). By inserting (2.13) into (2.9), we obtain exact expressions for the
conditional moments for arbitrary τ or, restricting the expansion (2.13) to some fi-
nite order, the respective approximations. In accordance with [Friedrich et al 2002],
we find as second-order approximations

M (1)(x, τ) = τD(1) +
τ2

2

[
D(1)(D(1))′ +D(2)(D(1))′′

]
+O(τ3) (2.14)

M (2)(x, τ) = 2τD(2) + τ2
[
(D(1))2 + 2D(2)(D(1))′ +D(1)

(D(2))′ +D(2)(D(2))′′
]

+O(τ3), (2.15)

where (...)′ and (...)′′ refer to the first and second derivative of the drift or diffusion
coefficient in the parentheses, respectively. In comparison to (2.6) and (2.7), we
thus obtain additional terms of order O(τ2).

Following [Kleinhans & Friedrich 2007], we introduce as first estimate, adapted
to finite sampling rates,

D
(n)
E,τ (x, τ0) :=

M (n)(x, τ0)
n!τ0

. (2.16)

Inserting the expressions (2.14) and (2.15) with known functions D(1)(x) and
D(2)(x) gives a theoretical estimate. An empirical estimate for a specific time series
is, on the other hand, obtained with definition (2.4) according to

D
(n)
E,τ (x, τ0) =

1
n!τ0

〈[x(t+ τ0)− x(t)]n〉 |x(t)=x. (2.17)

The connection between both, theoretical and empirical estimate, is directly given
by (2.9–2.13).

Turning to the theoretical case, we have analyzed the deviations of the esti-
mates D(n)

E,τ (x, τ0) from the original functions for different simple examples. For an
Ornstein-Uhlenbeck process (given by D(1)(x) = −αx and D(2)(x) = β with α,
β = const) we obtain as theoretical estimates

D
(1)
E,τ (x, τ0) = −αx (1− ατ0

2
) +O(τ2

0 ), (2.18)

D
(2)
E,τ (x, τ0) = β (1− ατ0) +

τ0α
2

2
x2 +O(τ2

0 ). (2.19)

The estimate D(1)
E,τ (x, τ0) differs from the original function by a decreased slope,

the estimate D
(2)
E,τ (x, τ0) is characterized by an additional quadratic term. For

the application, this means that a quadratic diffusion coefficient must not indicate
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Figure 2.2: The estimate D
(1)
E,τ (x, τ0) for a process with cubic drift and constant diffusion

(D(1)(x) = −ax3 and D(2) = b with a = 0.05, b = 0.5) for two different values of τ0.
The dashed (τ0 = 0.2) and dotted (τ0 = 0.5) lines indicate second-order estimates due to
(2.14), for the grey lines the terms of third order in τ according to (2.44) are additionally
considered (again dashed for τ0 = 0.2 and dotted for τ0 = 0.5). The original function
D(1)(x) is given by the solid black line. Figure (b) is a close-up view of the region around
the fixed point at x = 0 in (a).

multiplicative noise but can also be caused by a too low sampling rate. While
the behaviour of D(2)(x) is thus significantly affected by the finiteness of τ , the
behaviour of D(1)(x) changes just quantitatively but not qualitatively. In particular,
the fixed point of the process is not affected and can be reconstructed by the estimate
correctly.

Next, we consider a process with additive noise (D(2) = b) and cubic drift
(D(1)(x) = −ax3). Figures 2.2(a–b) show the estimate D(1)

E,τ (x, τ0) for two different
values of τ0 (dashed and dotted line, respectively). For both cases, the characteristic
behaviour of D(1) is again reproduced correctly by the estimate (2.14) – at least
locally. Globally, D(1)

E,τ (x, τ0) indicates additional fixed points, to the left and to
the right of the original fixed point and with the inverse type of stability. These
artefacts sensitively depend on changes of τ0, and they disappear when we consider
higher-order terms in (2.14). Estimates for the drift coefficient according to (2.16)
including additionally the third-order terms of the expansion (2.13) are shown in
figures 2.2(a–b) as grey lines. The corresponding third-order corrections to (2.14)
are given in the appendix to this chapter. This second example emphasizes that it
is of particular importance how many terms we consider for the expansion in (2.13).

To summarize the impact of finite-τ effects, figure 2.3 illustrates exemplarily
for an Ornstein-Uhlenbeck process the deviations between the empirical values and
the theoretical functions of different orders for M (1)(x, τ) as well as the deviation
between the introduced estimate and the intrinsic function for the drift coefficient.
(For the illustration, we restrict our investigations to the analysis of the first con-
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Figure 2.3: Empirical values and theoretical functions for the first conditional moment
of an Ornstein-Uhlenbeck process (α = 1, β = 1), and the deviation between the estimate

D
(1)
E,τ (x, τ0) and the intrinsic function D(1)(x). The empirical values for M (1)(x = −0.7, τ)

(according to (2.4)) are given by the symbols, the second- and third-order approximations
are denoted by the dot-dashed and dotted lines, resp. The solid line represents the linear
approximation τD(1)(x), the dashed line the relation τD

(1)
E,τ (x, τ0 = 0.5) with the estimate

according to (2.16). The grey circle indicates the value M (1)(x, τ0 = 0.5) used for the
derivation of the estimate.

ditional moment. An extension to M (2)(x, τ) is straightforward.) The empirical
values for M (1)(x, τ) (given by the symbols) are characterized by a curvature that
is defined by the higher-order terms in τ . Their agreement with the analytical
second- and third-order approximations (dotdashed and dotted lines) indicates up
to which value of τ the respective approximation is reliable. Furthermore, the il-
lustration shows the deviation between the estimate D(1)

E,τ (x, τ0) and the intrinsic

function D(1)(x) by comparing the linear relations τD(1)
E,τ0

(x, τ) and τD(1)(x). Only
in the limit τ → 0 they agree, i.e. the linear approximation M (1)(x, τ) = τD(1)(x)
is exact, and the larger the value of τ the larger is the deviation between estimate
and intrinsic function for D(1)(x).

2.3 Definition of drift and diffusion estimates
adapted to the presence of measurement noise

The second disturbance we discuss in this chapter is the presence of external mea-
surement noise. It has already been discussed in [Siefert et al 2003] how adding
measurement noise to signals generated from a Langevin process leads to funda-
mental modifications of the data analysis and the reconstruction of the underlying
dynamics. Siefert et al. considered the special case of Gaussian distributed mea-
surement noise defined by σζ(t) with 〈ζ(t)〉 = 0 and 〈ζ(t1)ζ(t2)〉 = δ(t1 − t2) and σ
as the amplitude of the noise. The presence of external measurement noise means
that instead of x(t) the time series y(t) = x(t) +σζ(t) is measured, i.e. the intrinsic
process is superimposed by the external noise.
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Adopting these considerations, Böttcher et al. proposed an advanced approach
for the reconstruction of drift and diffusion coefficients based on the calculation
of the conditional moments M (n)

σ (y, τ) [Böttcher et al 2006]. Note that M (n)
σ is

actually the same function as M (n) (see definition (2.4)) but for the time series y(t)
instead of x(t). We use this new notation to distinguish the cases with and without
external noise and to avoid confusion in this connection.

Again, we summarize the corresponding proceeding, as it was proposed, before
we utilize it to define an appropriate estimate. Böttcher et al. pointed out that the
coefficients D(n)(x) are implicitly given by the conditional moments of the accessible
data y(t) according to 3

M (1)
σ (y, τ) = 〈y(t+ τ)− y(t)〉 |y(t)=y=x(t)+σζ(t)

= τ

∫
dxD(1)(x)f(x|y) +

∫
dx(x− y)f(x|y)

= m(1)(y, τ) + γ1(y) (2.20)

and

M (2)
σ (y, τ) =

〈
[y(t+ τ)− y(t)]2

〉
|y(t)=y=x(t)+σζ(t)

= τ

∫
dx
[
2(x− y)D(1)(x) + 2D(2)(x)

]
f(x|y)

+σ2 +
∫
dx(x− y)2f(x|y)

= m(2)(y, τ) + γ2(y), (2.21)

assuming before that the approximation

M (n)(x, τ) ≈ τn!D(n)(x) +O(τ2) (2.22)

for τ � 1 holds. The unknown probability density f(x|y) is defined by

f(x|y) =
f(y|x)p(x)∫
dxf(y|x)p(x)

, (2.23)

where f(y|x) is the distribution of the measurement noise, i.e. for Gaussian dis-
tributed noise

f(y|x) =

√
1

2πσ2
exp

[
− (y − x)2

2σ2

]
, (2.24)

and p(x) the distribution of the process x(t), in the stationary case given by

p(x) =
N
D(2)

exp
[∫ x

−∞
dx̃
D(1)(x̃)
D(2)(x̃)

]
(2.25)

with the normalization constant N (cf. [Risken 1989]). Equations (2.20) and (2.21)
indicate that the presence of measurement noise results in an offset γn(y) for the
conditional moments as function of τ . In order to deal with the divergence of
M

(n)
σ (y, τ)/τ resulting from this offset, we suggest to define

D
(n)
E,σ(y) :=

m(n)(y, τ)
n!τ

(2.26)

as second estimate for the drift and diffusion coefficient, respectively, adapted to
the presence of external measurement noise. The theoretical estimate is hence

3We introduce the notation f(...|...) here to distinguish the conditioned probability density
functions f(x|y) and f(y|x) from the unconditioned probability density p(x).
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determined by the first part in (2.20) and (2.21). An empirical estimate is calculated
by applying a linear fit to M (n)

σ (y, τ).
For a general process, (2.20) and (2.21) must be evaluated numerically. For an

Ornstein-Uhlenbeck process as defined above, however, we can check the effect of
the approximation (2.26) analytically. In [Böttcher et al 2006], the terms γn(y) and
m(n)(y, τ) were derived to

γ1(y) = −σ
2

λ2
y, γ2(y) = σ2 +

σ2s2

λ2
+
σ4

λ4
y2 (2.27)

and

m(1)(y, τ) = τ [−αy − αγ1(y)] , (2.28)
m(2)(y, τ) = 2τ(β − α{[γ2(y)− σ2] + yγ1(y)})

with λ2 := s2 +σ2 and s2 = β/α as the variance of the distribution p(x). It follows

D
(1)
E,σ(y) = −αy(1− σ2

λ2
), (2.29)

D
(2)
E,σ(y) = β(1− σ2

λ2
) + α(

σ2

λ2
− σ4

λ4
)y2. (2.30)

That is, in the presence of measurement noise, similar to the case of a finite sampling
rate, the estimate for D(1)(x) differs from the original function quantitatively but
not qualitatively. The absolute slope α is reduced by a factor depending on σ.
The behaviour of D(2)

E,σ(y), on the other hand, is also qualitatively influenced by
the external noise. The constant term β is not only reduced by the same factor
depending on σ but additionally superimposed by a quadratic term.
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Figure 2.4: Empirical values (symbols) and theoretical function (dotted line) for the first

conditional moment M
(1)
σ (y = −0.7, τ) of an Ornstein-Uhlenbeck process (α = 1, β = 1)

that is superimposed by measurement noise (σ = 0.5). The solid line denotes the relation
τD(1)(y) for the undisturbed case without external noise, the dashed line gives the relation

τD
(1)
E,σ(y) with the estimate according to (2.26).
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For illustration, figure 2.4 compares the theoretical and empirical values for
M

(1)
σ (y, τ) as well as the estimate D(1)

E,σ(y) and the undisturbed intrinsic drift func-
tion for an Ornstein-Uhlenbeck process – analogous to figure 2.3. The empirical
values (given by the symbols) are perfectly reproduced by the theoretical function
(dotted line). The deviation between the relation τD

(1)
E,σ(y) (dashed line), with the

estimate defined as the slope of M (1)
σ (y, τ), and τD(1)(y) (solid line) indicate that,

though dealing with the offset induced by the presence of external noise, we have
not considered the σ-dependence of m(n)(y, τ) for the estimate D(n)

E,σ(y) (as given

in (2.26)). Note that the application of the estimate D(1)
E,σ(y) is restricted to small

ranges of τ where M (1)
σ (y, τ) vs. τ shows a linear behaviour.

2.4 Drift and diffusion estimates for a combination
of low sampling rates and measurement noise

We have analytically shown in the preceding two sections that for an Ornstein-
Uhlenbeck process both a finite resolution defined by τ0 and the presence of external
noise may lead to very similar deviations of the introduced estimates from the
original functions D(n)(x) (n = 1, 2). To illustrate this, figures 2.5(a) and (b) show
the empirical values as well as the theoretical functions for D(n)

E,τ (x, τ) and D(n)
E,σ(y)

for an Ornstein-Uhlenbeck process (α = 1, β = 1) that is sampled with τ0 = 0.2
for the first case and for the second superimposed by external noise with σ = 0.5.
Especially striking is the quadratic behaviour of the estimates for the diffusion
coefficient. In the case of a finite sampling rate defined by τ0 this has already
been detected in the approximation (2.7) with the correction term τ2(D(1))2. An
estimate that is adapted to this correction would reduce, though not eliminate the
quadratic effect. This is different for the case of a non-zero σ, i.e. in the presence
of measurement noise. Hence, it is essential to connect the results for the estimates
with the observations for the conditional moments. Whereas a non-zero offset is an
indicator for the presence of external noise, finite-τ effects are directly connected to
a nonlinear curvature of M (n)(x, τ) as function of τ . Checking these two indicators
gives essential information about which kind of disturbance is present and which
definition of the estimate has to be applied. Note that this is a central result for
the application of the presented method of reconstruction.

To take a further step, we next consider a process that is affected by a low sam-
pling rate and external noise likewise. The considerations above suggest a certain
hierarchy of both effects. The presence of external noise effectively changes the
observable process whereas the value of τ0 just determines when and at which rate
the process is observed. Consequently, we start with the considerations of section
2.3 and reformulate (2.20) and (2.21) as

M (1)
σ (y, τ) =

∫
dxM (1)(x, τ)f(x|y) +

∫
dx(x− y)f(x|y)

= m(1)(y, τ) + γ1(y) (2.31)

and

M (2)
σ (y, τ) =

∫
dx
[
2(x− y)M (1)(x, τ) +M (2)(x, τ)

]
f(x|y)

+σ2 +
∫

(x− y)2f(x|y)

= m(2)(y, τ) + γ2(y), (2.32)
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Figure 2.5: Empirical and theoretical estimates D
(n)
E,τ and D

(n)
E,σ (n = 1, 2) for an Ornstein-

Uhlenbeck process (α = 1, β = 1). The symbols represent the empirical results, the lines
the theoretical functions – open symbols and dotted line for τ0 = 0.2 and σ = 0 (third-
order corrections), full symbols and dashed line for τ0 = 10−3 and σ = 0.5. The solid lines
indicate the original functions D(1)(x) and D(2)(x).

expanding the moments M (n)(x, τ) (n = 1, 2) according to (2.9) and (2.13). Con-
sidering once again an Ornstein-Uhlenbeck process, the conditional moments for
the undisturbed process with a finite τ are given by

M (1)(x, τ) = −τa(α, τ)x, (2.33)
M (2)(x, τ) = 2τ [b(α, β, τ) + c(α, τ)x2] (2.34)

with appropriate definitions of the functions a = a(α, τ), b = b(α, β, τ) and c =
c(α, τ), dependent on how many terms we consider in (2.13). (The explicit functions
for third-order approximations are given in the appendix to this chapter.) Inserting
(2.33) and (2.34) into (2.31–2.32), we obtain

m(1)(y, τ) = τ [−a(α, τ) (1− σ2

λ2
) y] (2.35)

m(2)(y, τ) = 2τ{b(α, β, τ)− a(α, τ) [
σ2s2

λ2
+ (

σ4

λ4
− σ2

λ2
) y2] (2.36)

+c(α, τ) [
s2σ2

λ2
+
s4

λ4
y2]},

the terms for the offsets γ1(y) and γ2(y) remain unchanged (see (2.27)).
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Figure 2.6: Empirical values and theoretical functions for the first conditional moment
of an Ornstein-Uhlenbeck process (α = 1, β = 1) superimposed by external measurement

noise (σ = 0.5), and the deviation between the estimate D
(1)
E,τσ(y, τ0) and the intrinsic

function D(1)(x). The empirical values for M
(1)
σ (y = −0.6, τ) are given by the symbols, the

theoretical function is denoted by the dotted line (third-order approximation). The solid

line represents the linear relation τD(1)(y), the dashed line the relation τD
(1)
E,τσ(y, τ0 = 0.5)

with the estimate according to (2.37). The grey circles indicates the values M
(1)
σ (y, τ0 =

0.5) and M
(1)
σ (y, τ0 = 1.0) used for the derivation of the estimate.

Figure 2.6 shows the empirical values M
(1)
σ (y,τ) for an Ornstein-Uhlenbeck

process, similarly as in figure 2.4 but over a broader range of τ , together with
the theoretical approximation according to (2.35) (third-order approximation for
M (1)(x, τ)). Additionally, the linear relation τD(1)(y) including the intrinsic drift
function and the relation τD(1)

E,τσ(y, τ0) are depicted where the estimate D(n)
E,τσ(y, τ0)

(n = 1, 2) is defined as follows.
Since we have to deal with a nonlinear behaviour due to a comparatively large

τ0 and an (initially unknown) offset due to the measurement noise, simultaneously,
neither the estimate defined by (2.16) nor that of (2.26) are practicable. Instead we
suggest to define as a third estimate

D
(n)
E,τσ(y, τ0) :=

M
(n)
σ (y, 2τ0)−M (n)

σ (y, τ0)
n!τ0

, (2.37)

where τ0 is the smallest available time increment referring to the sampling rate
of the process. That is, we simulate a linear fit to overcome the non-zero offset
but minimize the number of fitted points to reduce the impact of the nonlinear
curvature.

We notice that D(n)
E,τσ(y, τ0) deviates considerably from the intrinsic function

D(n)(x), especially for large values of τ0. Without measurement noise it converges
to the intrinsic function for τ0 → 0. For σ 6= 0, however, there is still in this limit an
offset that corresponds to the deviation already shown in figure 2.4. The estimate
M

(n)
σ (y, τ0)/τ0, using the definition (2.16), would actually provide results closer to

D(n)(x) for certain values of τ0. The latter, however, diverges for small τ0 and is for
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Figure 2.7: Convergence behaviour of the estimates D
(1)
E,τ and D

(1)
E,τσ for an Ornstein-

Uhlenbeck process (α = 1, β = 1) with and without measurement noise (σ = 0.5). The
lines correspond to the theoretical estimates derived on the basis of the third-order ap-
proximations for the conditional moments.

this reason not suitable. Figure 2.7 gives an illustration of the discussed behaviour.
Note that although the deviations between the estimates and the corresponding
intrinsic function are quite large for the most cases, the former can be utilized to
extract the actual D(n)(x) with a good precision, as we show in the next section.

2.5 Reconstruction of the intrinsic drift and dif-
fusion functions from the estimates through
optimization

In this section, we present how the intrinsic functions D(n)(x) can be reconstructed
from the estimates D(n)

E,j (j = τ , σ, τσ) applying an optimization scheme. Following
[Böttcher et al 2006], where the disturbance by external noise has been considered
(but not yet the case of low sampling rates), the basic idea is to minimize the sum
of the squared deviations between the empirical estimates and the theoretical corre-
spondents. The general procedure is as follows: For a given data set, the conditional
moments are calculated for different values of x or y, respectively, and plotted as
function of the respective time increment τ . An offset and/or a nonlinear curva-
ture in these plots are indicators for certain disturbances. The according type of
estimate adapted to the respective disturbance is selected, and the empirical values
of the estimate are calculated directly from the data. Considering an appropriate
parametrization Q = {qi} for the corresponding intrinsic functions D(n)(x), the the-
oretical estimates are calculated either analytically or numerically. Finally, the sum
of the squared deviations between empirical and theoretical estimates is minimized
by varying Q and where necessary also the amplitude of the external noise assumed
for the respective theoretical estimates. In contrast to [Böttcher et al 2006], the
single contributions to the total sum of deviations are additionally weighted by the
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variances σ2

D
(n)
E,j

of the empirical estimates.

To demonstrate this procedure, we consider the example of a process defined
by a linear drift (D(1)(x) = −ax) and a quadratic diffusion coefficient (D(2)(x) =
b+cx2). A process of this type is observed in various systems ranging from finance to
turbulence or physiological time series (cf. [Renner et al 2001a, Wächter et al 2004,
Tabar et al 2006]). We have taken the values a = 1, b = 0.1 and c = 0.5 for
the parameters and simulated time series consisting of N = 5 · 106 data points in
each case. For the first case, we took a sampling rate of τ0 = 0.2. A nonlinear
curvature but zero offset in the plot of the conditional moments vs. τ suggests
to select the estimate D(n)

E,τ (x) as defined in (2.16) and (2.17). We calculated the

empirical values for D(n)
E,τ (x) and chose the parametrization D(1)(x) = −q1x and

D(2)(x) = q2 + q3x
2, Q = {q1, q2, q3}, to derive the theoretical estimates that will

be denoted by D̂
(n)
E,τ (x) for the following considerations. This notation indicates

that the theoretical estimates are adapted to the empirical ones by variation of the
set of parameters Q. Minimizing the sum of weighted quadratic deviations, i.e.

min
Q

{∑
i

{ 1
σ2

D
(1)
E,τ

[D̂(1)
E,τ (xi, τ0)−D(1)

E,τ (xi, τ0)]2 (2.38)

+
1

σ2

D
(2)
E,τ

[D̂(2)
E,τ (xi, τ0)−D(2)

E,τ (xi, τ0)]2
}}

,

we obtained the optimized reconstructed values q1 = 1.0 (±.01), q2 = 0.10 (±.01)
and q3 = 0.51 (±.01) that are in good agreement with the values of the original
parameters a, b and c.

For the second case, we took a sampling rate of τ0 = 10−3 and added measure-
ment noise with an amplitude of σ = 0.25 to the simulated time series. (This is the
example that has already been considered in [Böttcher et al 2006].) We used the
parametrization given above and performed the optimization

min
Q,σ̂

{ ∑
n=1,2

∑
i

{ 1
σ2

D
(n)
E,σ

[D̂(n)
E,σ(yi)−D(n)

E,σ(yi)]2 (2.39)

+
1
σ2
γn

[γ̂n(yi)− γn(yi)]2
}}

,

by varying the parameters Q and σ̃, where σ̃ denotes the varied value for σ. We
obtained the results q1 = 0.96 (±.01), q2 = 0.10 (±.01), q3 = 0.51 (±.01) and
σ̃ = 0.25 (±.01).

For the third and last case, we took a sampling rate of τ0 = 0.2 as in the first case
but added measurement noise with an amplitude of σ = 0.25 to the simulated time
series. We calculated the empirical estimates as defined in (2.37) and compared
them with the theoretical values derived according to

D̂
(n)
E,τσ(y, τ0) :=

m(n)(y, 2τ0)−m(n)(y, τ0)
n!τ0

. (2.40)

The (extrapolated) offsets of the corresponding conditional moments are given by

γn,E(y, τ0) := 2M (n)
σ (y, τ0)−M (n)

σ (y, 2τ0) (2.41)

and
γ̂n,E(y, τ0) := 2m(n)(y, τ0)−m(n)(y, 2τ0) + γ̂n (2.42)
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Figure 2.8: Empirical (symbols) and theoretical (solid and dashed lines) estimates D
(n)
E,τσ

and extrapolated offsets γn,E (n = 1, 2) for a process defined by the intrinsic functions
D(1)(x) = −ax (a = 1) and D(2)(x) = b+cx2 (b = 0.1, c = 0.5) sampled with τ0 = 0.2 and
spoilt by external measurement noise (σ = 0.25). Solid lines correspond to reconstructed
and optimized set of parameters (Q, σ̃) and dashed lines to original parameters (a, b, c,
σ).

for the empirical and the theoretical case, respectively. We performed the optimiza-
tion task

min
Q,σ̂

{ ∑
n=1,2

∑
i

{ 1
σ2

D
(n)
E,τσ

[D̂(n)
E,τσ(yi, τ0)−D(n)

E,τσ(yi, τ0)]2 (2.43)

+
1

σ2
γn,E

[γ̂n,E(yi, τ0)− γn,E(yi, τ0)]2
}}

by varying Q and σ̃, and obtained as results q1 = 0.98 (±.01), q2 = 0.10 (±.01),
q3 = 0.47 (±.01) and σ̃ = 0.25 (±.01). Figures 2.8(a–d) shows, exemplarily for
this last case, the empirical values for the drift and diffusion estimates and the
extrapolated offsets in comparison to the theoretical ones derived for the parameter
sets (Q, σ̃) and (a, b, c, σ).
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2.6 Handling the estimates and a note on the ro-
bustness of fixed points

For real data sets, an optimization procedure to reconstruct the intrinsic drift and
diffusion functions from the disturbed estimates, as presented in the preceding sec-
tion, is not always realizable. Selecting a parametrization with a too high number of
single parameters or considering too many orders of τ for the conditional moments,
the procedure rapidly becomes very complex and expensive.

Furthermore, the procedure is strictly speaking not applicable to processes that
are not Langevin or Markov processes, respectively. As a rule, the data set at
hand should be tested with regard to the Markov property prior to the analy-
sis. Often one can find a typical length scale above that the process is Markovian
even when this property is violated below (see e.g. [Renner et al 2001b]). Promis-
ing is, in this connection, also the fact that the presence of measurement noise
itself spoils the Markov properties of an underlying Markov process, as shown in
[Kleinhans et al 2007]. Hence, limitations at small scales must not stem from the
intrinsic properties of the underlying process dynamics but might be the result of
artificial noise sources that can be controlled much better than the actual intrinsic
dynamics.

As stated in the introduction, it might moreover even for non-Markovian pro-
cesses make sense to estimate at least the drift coefficient of such a process. The re-
construction of the drift coefficient is not necessarily affected by a non-Markovianity
of the process Against this, we have seen in sections 2.2–2.4 that it is significantly
disturbed by finite-τ and noise effects. It arises the question if the process dynamics
can be reduced to a minimal characteristic behaviour of the process that is not or
only weakly influenced by these effects. Reducing the drift dynamics to some char-
acteristic behaviour leads to the definition of its fixed points. Hence, the question is
if and how the fixed points of a certain process are affected by the discussed resolu-
tion and noise effects. To give an answer, we assume for the following considerations
again that we deal with a Langevin process.

From the analytical results obtained above we find that for an Ornstein-
Uhlenbeck process the position of the system’s fixed point is not at all influenced by
the discussed effects. The Ornstein-Uhlenbeck process is an absolutely symmetric
process and the robustness of its fixed point can just as well be deduced from simple
symmetry arguments. For non-symmetric processes, the case is more complicated.
In figures 2.9(a–d), we show the theoretical estimates of the drift coefficients for
four exemplary processes in comparison to the respective intrinsic functions D(1)(x)
(each time as solid black line). The estimates for the finitely resolved process and
that superimposed by external noise – given by the dotted and dashed lines, resp. –
have been derived according to (2.16) and (2.26). For figure 2.9(a), we have consid-
ered a process with linear drift and quadratic diffusion coefficient, both symmetric
with respect to their fixed point. The estimates seem to reproduce the fixed point
robustly. (A very small deviation stemming from the third-order finite-τ correction
is not resolved by the figure.) Figure 2.9(b) also shows a symmetric process but
with a multiple stability. The central fixed point is robust, whereas the two outer
move with the estimates. It is clear that the central fixed point is determined by
another symmetry than the two outer ones. While the shape of the drift coefficient
is compressed or stretched due to the the finite-τ as well as measurement-noise ef-
fects which strongly affects the outer fixed points, the central fixed point remains
unchanged. The latter is seen here as the centre of symmetry. Figure 2.9(c) shows
a process with asymmetric drift and constant diffusion, and figure 2.9(d) one that
is characterized by a shifted diffusion coefficient, otherwise it is the same process
as in figure 9(a). In both cases, the estimates differ from the intrinsic function for
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Figure 2.9: Theoretical drift estimates for four exemplary processes. (a) D(1)(x) = −ax
and D(2)(x) = b + cx2 (a = 1, b = 1, c = 0.5), (b) D(1)(x) = ax − bx3 and D(2)(x) = c
(a = 1, b = 0.5, c = 1), (c) D(1)(x) = − exp(x) + 1 and D(2)(x) = b + cx2 (a = 1, b = 1,
c = 0.5), (d) D(1)(x) = −ax and D(2)(x) = b + c(x + d)2 (a = 1, b = 1, c = 0.5, d = 2) –
each time with τ0 = 0.2, σ = 0 (dotted) and τ0 � 1, σ = 1 (dashed).

D(1)(x) to a certain extent, and the fixed point is shifted due to the asymmetries.

In summary, we can conclude that symmetries in D(1)(x) and D(2)(x) are of ex-
treme importance for the robustness of fixed points in the presence of measurement
noise and for finitely resolved processes. Asymmetries in the estimates for drift
and/or diffusion coefficients are therefore to be utilized as indicators and warnings
for potential shiftings of the fixed points. Finite-τ and measurement noise effects
may lead to similar, i.e. equally directed, but also to opposite deviations of the
estimated fixed points compared to the intrinsic ones. Note that the chosen values
for σ correspond to very strong measurement noise. Similarly, the chosen value for
τ0 is quite large comparing it with the intrinsic time of the process that is given by
a−1 for a process with linear drift. The deviations between estimates and intrin-
sic functions are accordingly large and should be regarded as upper limits rather
than as typical results. Nevertheless, the presented results show that even for these
cases the structure of the considered processes, i.e. their approximate functional
behaviour, could be unveiled by the estimates. A refined approach is to relate the
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amplitude of the external noise as well as the resolution of the sampled time series
with the nonlinearities of the intrinsic drift and diffusion functions. Since the fixed-
point analysis is a local linear method, it is affected if and only if the disturbance
brings the dynamics out of the linear vicinity of the fixed point.

2.7 Conclusions

We have investigated how two different aspects influence the reconstruction of
Langevin processes – a finite sampling rate and the presence of external measure-
ment noise. For both disturbances we identified indicators and introduced corre-
sponding estimates for the drift and diffusion functions defining the process. The
different estimates essentially differ in how the limit τ → 0 for the reconstruction
is realized (cf. the functional relation in (2.3)). Each kind of disturbance compli-
cates this limit in a specific way and the proposed estimates are adapted to the
particular difficulty. The specific relevance of the presented achievements is that
the two disturbances are not only discussed separately, as in [Friedrich et al 2002],
[Ragwitz & Kantz 2001] and [Böttcher et al 2006], but also in a combined way. This
allows for a more advanced application of the method of reconstruction to real data.
Note that our method also covers the case of strong noise.

We have presented two possibilities of technical application – one is to recon-
struct the intrinsic drift and diffusion functions from the estimates utilizing an
optimization scheme, and the other is to reduce the reconstruction of the process
dynamics to the estimation of its fixed points. The proposed optimization scheme
for the reconstruction can be seen as an alternative to the iterative procedure in-
troduced in [Kleinhans et al 2005] with the advantage that it can be applied to
processes suffering from a finite sampling rate and the spoiling by external noise
likewise. For the reconstruction of the fixed points we have worked out the relevance
of the symmetries of the underlying dynamical equations. For asymmetric processes
we showed that the derived estimates indicate fixed points that are shifted in com-
parison to the intrinsic functions due to a finite sampling rate and/or the presence
of external measurement noise. Thus, we obtained an indicator for the robustness
and the quality of estimated fixed points and at the same time defined a frame
for the application of a reliable fixed-point method. Likewise, the disturbances are
to be related to the nonlinearities of the intrinsic functions. With this informa-
tion, that is just obtained from the proposed method of data analysis, a model for
the considered system can be put up and fine-tuned optimizing the estimates by
iterative steps.
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2.8 Appendix: Derivation of third order terms

As third-order approximations for the conditional moments we find

M (1)(x, τ) = τD(1) +
τ2

2

[
D(1)(D(1))′ +D(2)(D(1))′′

]
+

τ3

6

[
D(1)(D(1))′(D(1))′ +D(1)D(1)(D(1))′′

+3D(2)(D(1))′(D(2))′′ + 2D(1)D(2)(D(1))′′′

+D(1)(D(2))′(D(1))′′ +D(2)(D(1))′′(D(2))′′

+2D(2)(D(2))′(D(1))′′′ +D(2)D(2)(D(1))′′′′
]

+ O(τ4), (2.44)

and similarly for the second conditional moment

M (2)(x, τ) = 2τD(2) + τ2
[
(D(1))2 + 2D(2)(D(1))′ +D(1)(D(2))′ +D(2)(D(2))′′

]
+

τ3

3

[
3D(1)D(1)(D(1))′ + 4D(2)(D(1))′(D(1))′

+7D(1)D(2)(D(1))′′ + 3D(1)(D(1))′(D(2))′

+4D(2)D(2)(D(1))′′′ + 7D(2)(D(2))′(D(1))′′

+4D(2)(D(1))′(D(2))′′ +D(1)D(1)(D(2))′′

+2D(1)D(2)(D(2))′′′ +D(1)(D(2))′(D(2))′′

+D(2)(D(2))′′(D(2))′′ + 2D(2)(D(2))′(D(2))′′′

+D(2)D(2)(D(2))′′′′
]

+O(τ4). (2.45)

For an Ornstein-Uhlenbeck process (D(1)(x) = −αx and D(2)(x) = β) this gives

M (1)(x, τ) = −ταx+
τ2α2x

2
− τ3α3x

6
+O(τ4), (2.46)

M (2)(x, τ) = 2βτ + τ2(α2x2 − 2αβ) +
τ3

3
(−3α3x2 + 4α2β) +O(τ4).(2.47)

Hence, the functions a = a(α, τ), b = b(α, β, τ) and c = c(α, τ), introduced in
section 2.4, are given by

a(α, τ) = α− τα2

2
+
τ2α3

6
, (2.48)

b(α, β, τ) = β − ταβ +
2τ2

3
α2β (2.49)

and

c(α, τ) =
τ

2
α2 − τ2

2
α3. (2.50)
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Chapter 3

A phenomenological model
for the power performance of
wind turbines

The work that is presented in this chapter has arisen for the most
part as subproject of the cooperative project “Wind turbulences and
their impact on the utilization of wind energy” that was supported and
financed by the BMBF (Federal Ministry of Education and Research)
during 2005 and 2008. This part of the project deals with the analysis
and modelling of the power performance of a wind turbine and especially
the influence of turbulent wind structures on it.

After a more general introduction to power performance testing, the
characterization of small-scale structures in wind speed time series is dis-
cussed in some detail. In an analogous analysis of respective power out-
put data, it is shown how the effects of turbulence appear in the power
performance of a wind turbine. In particular, a dynamical modelling
of the power performance based on high-frequency data is introduced,
describing the response dynamics of the turbine to the wind fluctua-
tions as a set of Langevin equations. This stochastic modelling enables
a quite flexible treatment of the turbulent small-scale structures. The
respective methods for reconstructing the underlying dynamical equa-
tions in terms of drift and diffusion, introduced in Chapter 1 and 2, are
applied to define a dynamical power characteristic that is discussed in
detail with respect to its applicability of reproducing the actual power
performance dynamics of an investigated wind turbine. Two appendices
include a previously published paper as well as a detailed description of
the data that were measured within the scope of the above mentioned
project and primarily used for the present analyses.
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3.1 Basic considerations on power performance
testing

3.1.1 Power performance and effective control

Wind turbines are mechanical devices that are specifically designed to convert a part
of the kinetic energy of a wind field into useful mechanical energy. Since nowadays
almost all wind turbines are built to convert this mechanical energy in a second step
into electricity, the term wind turbine often also includes the power generator unit.
This is the definition I refer to. Furthermore, I restrict my considerations to large-
scale horizontal-axis wind turbines and assume that the produced electrical energy
is directly fed into the grid. This is not an essential restriction but facilitates putting
the presented work in a certain context. For a detailed overview of different types
of wind turbines and corresponding modes of operation see e.g. [Burton et al 2001].

A common synonym for the term wind turbine is the more technical denotation
wind energy converter system (WECS), summarizing similarly the single compo-
nents of the rotor, the transmission system and the power generator unit. Inter-
preting a wind turbine as a complex system, it is dealt with a complex structure
of interacting subsystems that transfers the fluctuating wind field as input variable
into corresponding fluctuations of electrical power. The general relation between a
representative wind velocity and the output of electrical power is covered by the term
power performance. The central aim of power performance testing is to quantify
this relation for a specific wind turbine in order to characterize, certify or monitor
its behaviour. It is obvious that a key issue of power performance testing is the
measurement of the wind velocity. In principle, one is interested in the free-field
velocity, i.e. the velocity in the rotor plane if the wind turbine was removed. Since
the wind turbine however distorts the wind field, a corresponding measurement in
the rotor plane or nearby is not of use – at least not without further corrections.
Instead the upstream velocity is usually chosen as representative of the free-field ve-
locity, and measured with a meteorological mast in a certain distance in front of the
turbine. A second approximation consists in considering not the entire field acting
on the rotor but reducing it to the horizontal component of the three-dimensional
field on the height of the turbine’s hub. The consideration on how representative
this wind speed actually is for the wind field that drives the rotor is taken up in the
discussion in section 3.4.

Since the early 1980s, several groups of experts developed recommendations for
defining and determining the power performance of a wind turbine. Continuously
developed, they were adopted in a guideline by the International Electrotechnical
Commission (IEC) as the international standard IEC 61400-12 and the revised ver-
sion IEC 61400-12-1 [IEC 2005a]. Following these common guidelines for power
performance testing, the power performance characteristic of a wind turbine is de-
fined by its measured power curve and the corresponding estimated annual energy
production (AEP). The measured power curve is determined by collecting simulta-
neous measurements of wind speed, as defined above, and power output at the test
site for a period that is long enough to establish a statistically significant database
over a range of wind speeds and under varying wind and atmospheric conditions.
The power is, at this, defined as the net power, i.e. the produced electrical power
less all power losses caused by the turbine’s internal consumption. Subsequently to
the data collection, a functional relation, i.e. a two-dimensional curve of power out-
put vs. wind speed, is extracted out of this data. The AEP is derived by applying
the measured power curve to a reference distribution of wind speed for the test site
and assuming a specified availability of the wind turbine.
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The general shape of a power curve is deduced from the relation

P (u) = CP(u)Pu(u) with Pu(u) =
1
2
ρ0Au

3, (3.1)

where Pu is the power in the wind passing with a speed u through the rotor area A
at a density ρ0, and P is the extracted power – i.e. a power curve is roughly charac-
terized by a cubic increase of the power output with the wind speed. The functional
behaviour of the power coefficient CP(u) is the result of certain control strategies as
well as of physical limits. A theoretical limit for the maximum extractable power
is given by the Betz limit CP,max = 16/27 ≈ 0.59 that is derived on the basis of
momentum theory, modelling the wind turbine’s rotor as an actuator disc. Although
it is based on a strongly simplified approach, the Betz limit is a widely used and
accepted value. The power coefficients of modern commercial wind turbines reach
values of about 0.45 and are thus considerably below this theoretical limit and espe-
cially not constant for the whole range of wind speeds. Physical aspects that limit
the value of the power coefficient are e.g. the finite number of blades and losses due
to the drag and stall effects of the blades [Burton et al 2001, Bianchi et al 2006].

Beside extracting as much energy as possible from the wind, the most essential
control objective for a WECS is to limit the generated power to a specified value in
order to avoid overloading under high wind conditions. This value is called rated
power and is a basic design parameter of a wind turbine. The wind speed at that
the turbine reaches this value is referred to as rated wind speed. Furthermore, a
power curve is defined by the values of cut-in and cut-out wind speed that specify
the range of operation.

An ideal power curve, that is characterized by a cubic dependency of the power
on the wind speed according to (3.1) until the value of rated wind speed and then
shows a constant line at rated power, corresponds to a CP(u)-curve with a constant
line at CP,max for the range of wind speeds between cut-in and rated value that is
followed by a decrease of CP(u) proportional to u−3 until the wind speed reaches
the cut-out value. The shape of real power curves typically deviates from this
ideal behaviour which is at least to some extent the result of more refined control
strategies. In addition to maximizing the energy capture of a turbine and assuring
its safe operation, important control objectives are to prevent the system from
excessive mechanical loads as well as to maintain a certain power quality of the
generated power that is fed into the grid. The power curve that is determined as
the result of a power performance measurement eventually provides an insight into
the effective control behaviour of the wind turbine, disregarding everything that
happens between the recording of the wind speed and the output of power by the
wind turbine. It can be understood as a summarizing characteristic for the entire
WECS.

3.1.2 Standard procedure for power performance testing
(IEC 61400-12-1)

In this section, I briefly summarize the procedure for measuring the power perfor-
mance characteristic of a wind turbine as specified by the international standard IEC
61400-12-1 (cf. [IEC 2005a]). The purpose of this standard is to provide a uniform
methodology ensuring consistency, accuracy and reproducibility in the measure-
ment and analysis of the power performance of wind turbines. It clearly should be
seen as a compromise solution constituting the minimum requirements of a power
performance measurement, instead of as the final solution, and a procedure of data
analysis that is applicable without specific background knowledge.

The first part of the standard gives a detailed description of the necessary prepa-
rations for the performance test. This contains the criteria the test equipment has
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to fulfil as well the specifications for the location and setup of the meteorological
mast that is used to measure the wind speed and further meteorological parameters
as the wind direction, the temperature and air pressure. It also defines how to
choose the measurement sector, i.e. the range of wind directions that are considered
to be valid for a representative measurement of wind speed. Thereby, those wind
directions are excluded for that the mast is in the wake of the turbine. However,
it is not ensured that a certain part of a wind reaches the mast before the turbine,
assuming something like a frozen structure in its main direction of flow.

A more refined assessment of the terrain at the test site is the aim of the optional
site calibration procedure that accounts for further significant obstacles beside the
turbine itself. If a first investigation of the terrain yields that an enlarged site cali-
bration is necessary, a table of flow correction factors is determined in an additional
measurement and these factors are applied to the measured wind speed to reduce
the effect of terrain complexities on the power performance measurement.

The actual measurement procedure consists in collecting the data for the differ-
ent variables that should meet a set of further clearly defined criteria to ensure that
the data are of sufficient quantity and quality to determine the power performance
characteristics of the wind turbine accurately. The selected data is averaged over
periods of 10 min, and these mean values together with the corresponding standard
deviations are used for the analysis. Dependent on the type of turbine, either the
wind speed averages (for turbines with active power control) or the mean values of
power output (for stall-regulated turbines) are normalized to a reference air density.

The measured power curve is determined on the basis of the normalized values
by applying the so-called method of bins. That is, the wind speed values are divided
into intervals of a width of 0.5 m/s each, and for each interval bin averages of wind
speed and power output are calculated according to

Vi =
1
Ni

Ni∑
j=1

Vn,i,j and Pi =
1
Ni

Ni∑
j=1

Pn,i,j (3.2)

where Vn,i,j and Pn,i,j are the normalized values of wind speed and power averaged
over 10 min, Vi and Pi the corresponding bin averages, and Ni is the number of
10 min data sets in the ith bin. The power curve is assumed to be complete or
reliable if each bin includes a minimum of 30 min of sampled data and the entire
database covers a minimum period of 180 h of data sampling. The covered wind
speed range shall at least extend from 1 m/s below cut-in wind speed to 1.5 times
the wind speed at 85 % of the rated power of the wind turbine.

Subsequently, the AEP (annual energy production) is estimated by applying the
measured power curve to a reference wind speed distribution for different average
values according to

AEP = Nh

N∑
i=1

[F (Vi)− F (Vi−1)]
(
Pi+1 − Pi

2

)
. (3.3)

Nh is the number of hours in one year, Vi and Pi are the points of the measured
power curve for all N bins and F (V ) is the specified theoretical wind speed distri-
bution. It is established to assume for this purpose a Rayleigh distribution that is
defined according to

F (V ) = 1− exp
[
− π

4

(
V

Vave

)2]
(3.4)

where Vave is the considered average wind speed at hub height.
The wind speed and power values of the measured power curve define the power

coefficient CP by

CP,i =
Pi

1
2ρ0AV 3

i

(3.5)
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with ρ0 as the reference air density and A as the area swept by the wind turbine’s
rotor, that is presented as a function of the averaged wind speed values Vi for each
bin.

The standard, furthermore, provides a detailed description of the evaluation of
uncertainty in the power performance measurement. Single uncertainty components
are divided into category A and category B uncertainties. For the first category, the
magnitude of the respective uncertainties is deduced from the measurement as e.g.
the standard deviation of the distribution of normalized power data. The second
category of uncertainties is related to the instruments, the data acquisition system
and the terrain surrounding the power performance test site, and its magnitudes
are given as characteristic values.

An extension of the presented procedure is given by the standard IEC 61400-12-2
that is currently under consideration. This complement gives a detailed description
of evaluating power performance on the basis of nacelle anemometry. Due to a
very complex terrain it is sometimes not possible to find a suitable location for the
meteorological mast. Instead the anemometer is mounted directly on or near the
test turbine’s nacelle. The problem is however in this case that the measured wind
speed is strongly affected by the rotor of the test turbine. The revised standard
therefore provides methods for determining and applying appropriate corrections in
terms of a so-called nacelle wind speed transfer function (NTF).

3.1.3 Averaged power performance versus short-term dy-
namics

A considerable drawback of the standard procedure for power performance testing,
that is presented above, is the quite long measurement period that is necessary to
obtain statistically significant results, i.e. essentially to reach statistical convergence,
on the basis of the mean values of wind speed and power averaged over periods of
10 min. In addition, this averaging accounts for systematic errors in the final results
as shall be shown with a simple calculation (see e.g. [Risø-M-2632]). Expressing the
wind speed as u = ū+u′, where ū is the mean value with respect to a specified time
period, i.e. ū ≡ 〈u〉 as an average for a set of discrete points, and u′ are the high-
frequency fluctuations around this mean value, it is straightforward to show that
〈P (u)〉 6= P (ū) holds for a nonlinear relation P (ū) and a non-vanishing variance of
the fluctuations u′. Therefore, the function P (u) is firstly expanded in the Taylor
series

P (u) = P (ū) +
∂P (ū)
∂u

u′ +
1
2
∂2P (ū)
∂u2

u′(t)2 +O(u′3). (3.6)

Assuming that the average of the fluctuations u′ vanishes, i.e. 〈u′〉 = 0, and neglect-
ing the terms O(u′3), one obtains for the averaged power values

〈P (u)〉 = P (ū) +
1
2
∂2P (ū)
∂u2

σ2 (3.7)

with σ2 ≡
〈
u′2
〉
. According to this result, it follows that fluctuations in the wind

speed, that are broadly referred to as turbulence, together with the nonlinearities
of the power curve give rise to systematic errors in the averaged power values.
(A more detailed characterization of the term turbulence is given in the next
following section.) Introducing the turbulence intensity Iu ≡ σ/ū, that is com-
monly utilized as a site-specific quantity, the corresponding deviations are pro-
portional to I2

u . The obtained deviations are often related to so-called tur-
bulence effects, holding the turbulent wind fluctuations responsible for them.
In several approaches, it has been attempted to incorporate these deviations
as correction terms into an advanced procedure of power performance analysis
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[Risø-M-2632, Albers & Hinsch 1996, Kaiser et al 2007, Albers et al 2007]. A basic
limitation is however at this that the exact relation P (ū) is in principle unknown.

An alternative approach is to consider for the analysis of power performance not
only the averaged values over 10 min but also to utilize the information from smaller
time scales – either by introducing shorter averaging periods or by using directly
the highly sampled data. At this, however, another difficulty arises that is referred
to as lack-of-correlation problem (see e.g. [Risø-M-2632]). On small time scales the
fluctuations of wind speed and power output are far from perfectly correlated due
to several reasons. Firstly, the dynamics of the wind field is averaged over the area
that is swept by the rotor before it is reflected in the power fluctuations. That is,
the rotor acts as a low-pass filter on the wind speed fluctuations. The averaging
time T applied to the data must be large enough not to feel the respective influence
if this effect is not considered in an appropriate dynamical description. The same
holds for the control dynamics of the wind turbine. Adjusting the control strategy
to the varying wind conditions, the WECS shows a certain response behaviour that
possibly delays or integrates over the occurring fluctuations. In [Risø-M-2632] it
is argued that the corresponding dynamic time constant of the WECS will start
to play a role for the evaluation of power performance if its order of magnitude
becomes larger than about 0.1T , where T is the averaging time defined above. A
further relevant issue is the spatial distance between the wind speed measurement
and the position of the turbine. This distance, that is usually between two and four
times the rotor diameter according to [IEC 2005a], introduces an additional delay
in the fluctuations and a corresponding lack of coherence. In this connection, it also
becomes important what kind of model is assumed for the propagation of the wind
field. The picture of a frozen turbulence, where the wind field forms a more or less
homogeneous front and fluctuations transverse to the main flow direction are mostly
neglected, is not appropriate for an accurate description on small time scales. In this
regard, also the yawing dynamics, i.e. the process of adjusting the wind turbine’s
rotor with respect to the flow direction of the wind that is typically characterized
by a finite response time, and a respective yawing misalignment may matter. A
last point that shall be itemized here is the response of the used anemometers that
similarly show a certain finite dynamical behaviour.

The objective of the standard procedure due to [IEC 2005a] is to average over all
these dynamical effects and separate the actual characteristic large-scale behaviour
of the WECS from the short-term fluctuations that are effected by the listed aspects
of small-scale dynamics. But because of the asymmetry of the fluctuations that is
introduced by the nonlinearity of the power curve if not present anyway, this kind
of low-pass filtering defined by a simple averaging procedure is not an appropriate
solution to the faced problem. I present a different approach in this work handling
the asymmetries of the fluctuations as well as the dynamical influences on small
scales much more flexible. For this purpose, I firstly elaborate on what may be
called turbulent structures in wind speed and power output time series and how
they can be characterized in section 3.2 before I introduce a phenomenological
approach to the modelling of the effective dynamics in the power performance of a
WECS in section 3.3.
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3.2 Turbulent structures in wind speed and power
output

3.2.1 Characterization of short-term structures in wind
speed time series

Decomposition into a mean component and respective short-term fluc-
tuations

A common approach in the study of turbulent flows is to decompose the considered
variable into a mean value and corresponding short-term fluctuations around this
value. The fluctuations that are obtained as difference between the measured time
series and the derived average are often referred to as turbulence, and studying
turbulence means, in this sense, investigating the properties of these fluctuations (cf.
[Panofsky & Dutton 1984]). In principle, the definition of the averaging procedure
is arbitrary. The most common choice is probably a time average. For the wind
speed, for instance, we may write u = ū+ u′ where ū is defined according to

ūT :=
1
T

∫ T

0

dt u(t) (3.8)

with regard to an averaging period of length T . For a time series of discrete data,
the integration in (3.8) is replaced by a summation according to

〈u〉T :=
1
NT

NT∑
i=1

u(ti), (3.9)

where NT is the number of discrete data points at times ti that lie within the time
period T . If not otherwise specified, I use ūT and 〈u〉T synonymously. To simplify
matters, the index T is omitted in the following.

Not only the values for the steady wind speed ū but also the properties of the
respective fluctuations u′ essentially depend on the choice of the averaging period
T . To illustrate this, figures 3.1(a) and (b) show an exemplary wind speed time
series together with the averages ū and the fluctuations u′ for two different values of
T . Partly, the diagrams show considerable deviations which points out the difficulty
that is related to the choice of an appropriate value for T . For a detailed description
of the data that is used for these and the following figures see Appendix B.

For applications in the field of wind energy research, an averaging period of
T = 10 min is commonly used (see e.g. [IEC 2005a] and section 3.1.2). This regu-
lation is often justified with the existence of a spectral gap in the power spectrum
of wind speed time series for time scales in this range. The observation of this
so-called mesoscale gap goes back to [van der Hoven 1957] where it was localized
as a region of low spectral density around periods of from approximately 5 min to
5 h, lying between the synoptic peak with high densities for large scales and the
turbulent peak corresponding to a high spectral density for small scales. Over the
last decades, the location of the mesoscale gap has been highly debated and its
existence even totally denied. In [Panofsky & Dutton 1984] it is argued that even if
such a minimum exists, the corresponding density will be far from zero which may
cause severe difficulties in the problem of separating a mean from the turbulent
flow. Accordingly, the application of such a separation is rather rigorous.

For the specific applications, as described above for the example of power per-
formance testing according to [IEC 2005a], the actual data analysis is based on the
average values whereas the short-term fluctuations are only considered in terms of
the turbulence intensity. The turbulence intensity of a wind speed time series, de-
fined by Iu := σ/ū where σ is the standard deviation σ :=

√
〈[u′ − 〈u′〉]2〉 =

√
〈u′2〉
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Figure 3.1: (a) Typical time series u(t) of atmospheric wind speed (grey) together
with the corresponding mean values ū for averaging times of T = 10 min (black) and
T = 1 min (red) over a length of 90 min. (b) Resulting short-term fluctuations u′=u− ū
(black curve for T = 10 min and grey for T = 1 min) and (c) increments uτ for values
τ = 1 s (black) and τ = 5 s (grey), for a segment of 10 min in each case. (A detailed
description of the used data is given in Appendix B.)

(note that 〈u′〉 vanishes due to its definition), is evaluated for each interval of length
T . Its dependence on the mean value ū is utilized as a site specific characteristic
(cf. the international standard IEC 61400-1 [IEC 2005b] specifying the design re-
quirements for wind turbines, where this relation is used to define different wind
turbine classes corresponding to respective categories of turbulence characteristics).
A typical plot of Iu as function of ū is shown in figure 3.2(a).

Apart from the question if the utilized separation of mean and short-term dy-
namics is feasible, it should be checked how representative the turbulence intensity
is for the investigated fluctuations. Its definition solely includes the first and sec-
ond moment, i.e. mean value and standard deviation, of the considered data – a
restriction that is only valid if the data is described by a normal or Gaussian dis-
tribution. To verify this assumption, I additionally determined the skewness S and
the flatness (kurtosis) F of the single pdfs that are defined as standardized third
and fourth moment according to

S :=
µ3

σ3
, F :=

µ4

σ4
, (3.10)
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Figure 3.2: (a) Turbulence intensity Iu as fractional number (not in per cent) for a wind
speed time series u(t), consisting of 58 days of data sampled with a frequency of 1 Hz, as
function of the respective mean wind speed ū. (b) Skewness S and (c) excess kurtosis F̃
for the respective short-term fluctuations u′=u − ū (or the high-frequency data u itself,
resp.) conditioned on 10 min periods. The single values for each 10 min interval are given
by the small grey dots. The black dots give bin averages for bins with a width of 1 m/s
each.

where µn is the n-th centralized moment, i.e. here µn = 〈[u′ − 〈u′〉]n〉 = 〈u′n〉, and
σ again the standard deviation. Note that the second centralized moment equals
the variance σ2, i.e. µ2 ≡ σ2. A normal distribution has the skewness S = 0 and
the kurtosis F = 3. Instead of F , often also the excess kurtosis F̃ := F − 3 is
introduced that equals zero for a normal distribution.

Figure 3.3 illustrates the results for three exemplary 10 min periods. The de-
rived probability density functions (pdfs) p(u) conditioned on the particular time
interval of length T = 10 min and respective mean value ū are compared to a normal
distribution that is characterized by the standard deviation of the analyzed data.
Calculated values for skewness and excess kurtosis are given in the caption. The
corresponding results of the two measures for the complete data set are shown in
figures 3.2(b) and (c). The values for both, the skewness and the excess kurtosis,
lie approximately around zero which indicates that the high-frequency fluctuations
for the single 10 min intervals are on average described by symmetric Gaussian
shaped distributions. Though, the results in figures 3.3(a–c) show also considerable
variations and respective deviations from these average levels. It is however ques-
tionable if these deviations from the normal distribution constitute the structures of
non-Gaussian turbulence. The results in figures 3.2(a–c) and 3.3 primarily indicate
that the number of data sampled over a period of only 10 min is too small to give
well-defined, i.e. non-scattering, values for the three calculated measures.

The conclusion is different when the statistics of the fluctuations u′ is not inves-
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Figure 3.3: Pdfs of high-frequency data u conditioned on 10 min periods in comparison to
normal distribution with same standard deviation – exemplarily for three different intervals
and respective values ū. Results for turbulence intensity Iu, skewness S and excess kurtosis
F̃ are as follows: (◦) ū=5.88 m/s, Iu=0.12, S=0.01, F̃=0.01; (4) ū=9.56 m/s, Iu=0.12,
S=0.44, F̃=0.20; (�) ū=8.75 m/s, Iu=0.12, S=0.17, F̃=0.54. The two lower pdfs are
shifted in vertical direction for clarity of presentation.

tigated with respect to the single 10 min intervals but analyzed combined as one
data set. As shown in figure 3.4, the probability density function (pdf) of the entire
set of fluctuations u′ is characterized by a strongly non-Gaussian behaviour. The
probability of large events is significantly higher than for a normal distribution with
the same width, which is also referred to as heavy-tailed statistics or intermittency.
For an averaging period of 10 min, the excess kurtosis of the fluctuations has a value
of F̃ = 3.4 that still exceeds the maximum values in figure 3.4(c) and is considerably
higher than the average level of the values for the single 10 min intervals. Figure 3.4
also indicates how the entire distribution of fluctuations depends on the averaging
period – the smaller the value of T , which defines the mean value ū with respect
to that the fluctuations u′ are determined, the more intermittent but at the same
time narrower is the pdf of u′. The corresponding values for the standard deviation
and the excess kurtosis, reflecting this behaviour, are given in the caption to figure
3.4.

The intermittency for the entire distributions of the fluctuations u′, in com-
parison to the distributions for the single intervals that show roughly Gaussian
statistics, is traced back to the non-stationarity of the wind speed time series.
The non-stationarity is a basic property of atmospheric wind speeds, and one of the
main distinguishing features between atmospheric turbulence and the homogeneous,
isotropic and stationary turbulence that is realized in laboratory experiments. To
further illustrate this issue, I refer to the approach of describing turbulent structures
in terms of increment statistics (cf. [Böttcher et al 2003, Böttcher et al 2007a]) that
is presented in the following paragraph.
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Figure 3.4: Pdfs of the fluctuations u′ for the entire set of data (58 d, sam-
pling rate 1 Hz) with respect to different values of T defining the averaging for
u and consequently the determination of the fluctuations u′– from top to bottom
T = 10 min (black), T = 5 min and T = 1 min (both in grey). The two lower pdfs
are shifted in vertical direction for clarity of presentation. Values for the standard devia-
tion and the excess kurtosis of the shown pdfs are σ = 0.94 m/s, 0.89 m/s, 0.74 m/s and
F̃ = 3.4, 3.7, 4.5 for T = 10 min, 5 min and 1 min (in this order).

Analyzing turbulent structures in terms of increments

A wind speed increment is defined according to

uτ (t) := u(t+ τ)− u(t) (3.11)

as the difference between two values of wind speed that are separated by a time
increment τ . An example of a time series uτ (t) for two different values of τ is
shown in figure 3.1(c). The difference between the short-term fluctuations u′ and
the increments uτ can be seen as follows. While the fluctuations u′ are per definition
related to a reference value that is determined over a certain period of time but only
indirectly to more than one distinct point in time, a time increment corresponds to
a fluctuation that is determined by two distinct wind speed values and a respective
time separation, and hence may reflect correlations with respect to the scale τ .
Accordingly, increment statistics are also referred to as two-point statistics. They
are often studied in terms of their moments 〈unτ 〉 that are referred to as structure
functions. It is straightforward to show that the second-order structure function
is directly related to the auto-covariance of 〈u(t+ τ)u(t)〉 and respectively to the
power spectral density, thus actually reflecting correlations in time. The skewness
and kurtosis of the increment distributions are in turn defined as standardized third-
and fourth-order structure functions.

The behaviour of increment pdfs for varying τ is quite similar to that of the
pdfs of the fluctuations u′ for different T . For increasing values of τ , the pdf of the
increments uτ becomes less intermittent while its width increases – see figure 3.5.
This behaviour is described in more detail in figure 3.6, that shows the standard
deviation as well as the logarithmic kurtosis of the increments uτ as function of
the time increment τ . For increasing values of τ the standard deviation increases
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Figure 3.5: Pdfs of the wind speed increments uτ for different time increments τ – from
the bottom up τ = 1 s, τ = 5 s and τ = 30 s. The two upper pdfs are shifted in vertical
direction for clarity of presentation.

whereas the kurtosis decreases.
I plotted the function ln(F/3) instead of the actual kurtosis F for a specific

reason that shall be briefly outlined in the following. As shown in [Beck 2004],
the value ln(F/3) is proportional to the form parameter λ2 that is introduced in
[Castaing et al 1990] to fit the intermittent pdfs of wind velocity increments ob-
tained from laboratory experiments. For this purpose, it is assumed that the in-
termittent pdf is given by a superposition of single Gaussian distributions with
log-normal distributed variances according to

p(uτ ) = dσ p(uτ |σ)f(σ)

=
∫ ∞

0

dσ
1

σ
√

2π
exp

[
− u2

τ

2σ2

]
× 1
σλ
√

2π
exp

[
− ln2(σ/σ0)

2λ2

]
(3.12)

where σ0 is the median of the log-normal distribution and λ2 its variance – all
other quantities were defined before. The application of this formula as well as the
utilization of λ2(τ) as a characteristic quantity is well established in the field of
turbulence research.

In [Böttcher et al 2003], this characterization is applied to reveal the basic differ-
ence between increment distributions for atmospheric and for laboratory turbulence
data. For laboratory turbulence, the increment distributions show an intermittent
behaviour for small values of τ but saturate against a normal distribution for large
τ . For atmospheric data this saturation is not observed, at least not for the inves-
tigated time scales up to τ = 105 s, and the values for λ2 are overall larger. (Note
that a larger value for λ2 refers to a more intermittent distribution. A pdf with
λ2 = 0 has the shape of a Gaussian distribution.) This discrepancy partly vanishes
when the wind speed increments are conditioned on a respective mean value. Thus,
the non-stationarity of the atmospheric data is again of essential importance.

Due to this finding, Böttcher et al. proposed to model the intermittent pdfs of at-
mospheric wind speed increments as a superposition of different subsets of isotropic
turbulence (see [Böttcher et al 2007a]). Denoting these subsets with p(uτ |ū) and
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Figure 3.6: (a) Standard deviation σ and (b) form parameter λ2 ∝ ln(F/3) for the pdfs
of the wind speed increments uτ as function of the time increment τ (cf. figure 3.5).

the distribution of the mean values with h(ū), the pdf of the resulting increments
is given by

p(uτ ) =
∫ ∞

0

dū h(ū)× p(uτ |ū). (3.13)

At this, p(uτ |ū) corresponds to the Castaing distribution (3.12), and h(ū) is assumed
to be a Weibull distribution with certain shape and scale parameters that are derived
from the corresponding set of experimental data. A respective decomposition of
p(uτ ) into single conditioned pdfs p(uτ |ū) is shown in figure 3.7(a). The figure
suggests that the width of p(uτ ) increases with the range of ū whereas the degree of
intermittency decreases. The latter is even more distinct in figure 3.7(b), showing
the pdfs normalized to their standard deviations. Note that the increments of
atmospheric wind speed data are, thus, described in terms of two different kinds of
superpositions – a superposition of single Gaussian distributions with log-normal
distributed variances according to Castaing, and a second superposition of these
so-called Castaing distributions with respect to different mean values of wind speed
as a kind of non-stationary mixing. The two kinds of superpositions are, at the
same time, related to two different sources of intermittency.

3.2.2 A note on gusts

The last preceding section has dealt with an appropriate characterization of wind
speed fluctuations. Before I transfer the discussed concepts to the analysis of the
respective power output data, I give a short note on their relevance for the definition
of gusts.

In particular, I introduced two different concepts to describe short-term struc-
tures in turbulent wind speed time series – fluctuations with respect to a mean
value defined by a certain averaging time T , and increment values determined by a
time increment τ representing two-point statistics. Both approaches give a specific
description of turbulence. In wind energy research, as well as in other rather appli-
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Figure 3.7: Entire pdf p(uτ ) (black) and the conditioned pdfs p(uτ |ū) for ū ∈ [2, 4] m/s,
ū ∈ [5, 6] m/s and ū ∈ [12, 25] m/s (from the center outwards, and all three in grey)
for τ = 1 s. Figure (b) shows the same pdfs as in (a) but with the increment values
conditioned to their respective standard deviations.

cation oriented fields of research, turbulence and especially atmospheric turbulence
is directly related to the occurrence of wind gusts (see e.g. [Risø-M-2632]). The fre-
quency of occurrence, or more general the statistics of wind gusts, may define the
degree of turbulence. Gusts are in turn nothing else than certain fluctuations, the
explicit definition however is still an open issue and there exist a couple of different
approaches.

In the standard IEC 61400-1[IEC 2005b], a gust is defined as a temporary change
in the wind speed, and it is proposed to characterize it by its rise-time, its magnitude
and its duration. In the further details of the standard, several types of gusts are
defined that are given by a precise description in terms of a theoretical function u(t)
for each case. The application of these definitions is rather difficult. In addition,
they depend on on at least two different reference periods or averaging times that
considerably affect the results. To find the most appropriate averaging time is in
general a non-trivial problem.

In [Böttcher et al 2007a], it is proposed to identify large increment values for
small values of τ as wind gusts. This approach has the advantage that no averaging
has to be defined and, furthermore, the corresponding increment statistics directly
includes a statistics for extreme events, quantifying the probabilities determined by
the so-called fat tails. The time increment τ corresponds to the rise-time of the
gust. Increment pdfs for different values of τ thus define gust statistics for different
rise-times. However, also the increment pdfs are not unambiguous. Similarly as
the short-term fluctuations u′ = u − ū, they depend on the sampling rate of the
time series u(t). A first averaging, for instance from 50 Hz to 1 Hz as for the data
set I analyzed (see Appendix B), already modifies the data basis and influences the
results for the pdfs of fluctuations.

By studying the pdfs of the wind speed increments as well as of the short-term
fluctuations u′ in the preceding section, I have shown that it is often not sufficient
to describe the statistics of small-scale fluctuations or gusts only in terms of the
second moment of the distributions. Rather, it may be necessary also to consider at
least the fourth moment that defines intermittency and respectively the occurrence
of large events. For the fluctuations u′, it has to be differentiated at this if respective
statistics are investigated with respect to limited intervals in time as the typical 10
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min periods or for a longer data set that is essentially affected by a non-stationarity
of the considered quantity. A similar impact has the conditioning of the increments
uτ to a respective average wind speed value. To a large extent, intermittency is
thus related to the non-stationarity of the wind speed time series – even though not
solely.

Eventually, the question arises which kind of fluctuations actually act on a wind
turbine that is exposed to a turbulent wind field – at this, a respective impact may
be defined as a load or as well as an effect on the power output of the system.
In general, gusts should be defined in an object-related way. For instance, the
control system of the WECS may determine which kinds of fluctuations, and in
particular with respect to which reference time, are relevant for the system. A
similar argument applies for the power quality that is defined with respect to the
grid the produced power is fed in. The definition of a specific gust directly depends
on the kind of conclusion that shall be deduced from its value.
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Figure 3.8: Pdfs of the wind directions increments φτ for all wind speeds (black) and for
u > u0 = 4 m/s (grey) – from the bottom up for τ = 1 s, τ = 5 s and τ = 30 s. Values
|φτ | > 180 are added or subtracted by 360◦. The two lower pdfs are shifted in vertical
direction for clarity of presentation.

Another aspect, that has not been discussed in this chapter yet, is the number
of dimensions considered for the description of the wind field. The horizontal wind
speed, that is solely studied so far, is a one-dimensional quantity, and thus gives a
strongly reduced description of the three-dimensional wind field. To illustrate the
magnitudes of the influences of the further wind velocity components, figures 3.8
and 3.9 show the statistics of fluctuations in the wind direction and the vertical wind
velocity component that go along with the fluctuations in the horizontal wind speed
discussed before. The increment values φτ (t) and uz,τ (t) are defined in accordance
with (3.11). Their pdfs show a similar intermittent behaviour as those for the
horizontal wind speed increments uτ (cf. figure 3.6). Note that the broadened tails
of the pdfs for the wind direction increments are mainly due to extreme direction
changes at low wind speeds. Their physical impact as e.g. extreme load changes is
therefore rather low. Figure 3.9 additionally shows the wind pdfs of the increments
φτ for wind speeds u > u0 (u0 = 4 m/s), that are regarding their shape much more
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Figure 3.9: Pdfs of the vertical wind speed component uz (black) and its increments uz,τ

for τ = 1 s, τ = 5 s and τ =30 s (from the bottom up, and all three in grey). The three
lower pdfs are shifted in vertical direction for clarity of presentation.

similar to the pdfs of the wind speed increments shown above.
It becomes obvious that the picture of a wind field that forms a homogeneous

front in horizontal direction is just as inappropriate as neglecting the fluctuations
of the wind velocity in vertical direction. In the standard IEC 61400-1 [IEC 2005b],
these three-dimensional fluctuations are accounted for by the specific gust definitions
as that of an extreme direction change (EDC), an extreme wind shear (EWS), and
an extreme coherent gust with direction change (ECD), that are introduced in
addition to the extreme operating gust (EOG) describing only the extreme changes
in the horizontal wind speed component. For all these gust types however apply
the same critical remarks stated above.

3.2.3 Transfer of turbulent structures to the power output

In this section, I investigate to what extent the short-term fluctuations in the wind
velocity are reflected in the power output of a wind turbine that is exposed to
them. For this purpose, I again restrict my analysis to the horizontal wind speed
as characterization of the wind field acting on the turbine, having in mind that this
is only a reduced representation.

Just as the wind speed, the time series of the power output can be described
in terms of a mean value and corresponding short-term fluctuations according to
P = P̄ + P ′ with an appropriate averaging period T . A turbulence intensity for
the power output is accordingly defined by IP := σ/P̄ with σ =

√
〈[P ′ − 〈P 〉]2〉 =√

〈P ′2〉 as the standard deviation of the short-term power fluctuations. Applying
an averaging period of T = 10 min, as proposed in the standard IEC 61400-12-1 for
power performance testing, I again derived the turbulence intensity as well as the
skewness and the excess kurtosis for the distribution of the fluctuations P ′ for the
single 10 min intervals of a measured set of power data. (The data was measured
in parallel to the wind speed data analyzed in 3.2.1 – for a detailed description
see Appendix B.) The results are shown in figures 3.10(a–c) for the whole data
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set and in figure 3.11 for three exemplary intervals of a length of 10 min each –
analogously to figures 3.2 and 3.3 for the wind speed u. In all three measures,
turbulence intensity, skewness and kurtosis, the influence of the power curve as
transfer function between wind speed and power output fluctuations is clearly seen.
The values for the turbulence intensity of the power output are overall larger than
those for the wind speed but significantly decrease in the range of rated power –
see figure 3.10(a). Similarly, as indicated in figures 3.10(b) and (c), the skewness
and the kurtosis show a specific behaviour in this range, which characterizes the
transition region from full load to partial load at the point of rated wind speed
as a very essential region. In particular, the systematic deviations of the skewness
from zero indicate the asymmetries of power fluctuations that are caused by the
nonlinear parts of the power curve. These asymmetries give rise to the systematic
errors in the reconstruction of power curves applying the standard procedure due to
IEC 61400-12-1, that are discussed in 3.1.3. At the same time, figure 3.11 indicates
that the pdfs of the power data within the single 10 min intervals are far from
well-defined by the derived measures.

I have further investigate the small-scale behaviour of the power output by
studying the increments

Pτ (t) := P (t+ τ)− P (t) , (3.14)

where τ again defines the respective value of time separation for the considered
two-point statistics. Figure 3.12 shows the increment pdfs for three different values
of τ . Comparing the pdfs for the power increments with those for the wind speed in

Figure 3.10: (a) Turbulence intensity IP for a power output time series P (t), consisting of
58 days of data sampled with a frequency of 1 Hz (for a detailed description see Appendix
B). (b) Skewness S and (c) (excess) kurtosis F̃ for the respective short-term fluctuations
P ′ = P − (̄P ). The single values for each 10 min interval are given by the small grey dots.
The black dots give bin averages for bins with a width of 0.05Prated.
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Figure 3.11: Pdfs of high-frequency data P conditioned on 10 min periods in comparison
to normal distribution with same standard deviation – exemplarily for three different
intervals and respective values P̄ . (Examples for the same intervals as in figure 3.3, symbols
are taken over.) Results for turbulence intensity IP, skewness S and excess kurtosis F̃ are
as follows: (◦) P̄ /Prated=0.17, IP=0.18, S=0.07, F̃=-0.91; (4) P̄ /Prated=0.69, IP=0.13,
S=0.24, F̃=0.29; (�) P̄ /Prated=0.46, IP=0.32, S=0.51, F̃=-0.79. The two lower pdfs are
shifted in vertical direction for clarity of presentation.

figure 3.5, the additional structures for p(Pτ ) with τ = 1 s and τ = 5 s, denoted in
the following as bumps, attract attention. I studied these bumps, corresponding to
power jumps of approximately a third and a fifth of the rated power, in more detail
and found that they occur for a wide range of power values P (t) but most frequently
as a jump from or to rated power. They vanish at about τ = 20 s – for this reason we
have related them to a discretization effect (cf. [Gottschall & Peinke 2007]). Note
that these structures are specific for the investigated WECS and that the pdfs of
power increments for other types of machines may look quite different.

Apart from these additional structures, the pdfs for the power increments show
a similar behaviour and especially a similarly distinctive intermittency as the in-
crement pdfs for the wind speed, and I conclude that the turbulent small-scale
structures in the wind speed are more or less directly transferred to the power
output of the considered wind turbine.

To inspect this transfer in more detail and roughly quantify the extent to which
the WECS integrates over the wind speed fluctuations, I pursued the following
simple approach. I compared the measured power increments with the reconstructed
increments of a power output time series that results from simply applying a power
curve derived according to IEC 61400-12-1 to the measured wind speed time series –
i.e. Pp.c.(t) := Pp.c.(u(t)) where Pp.c.(u) is the measured and splined or interpolated
power curve. As shown in figure 3.13 for a time separation of τ = 20 s, the pdf for the
reconstructed power increments Pp.c.,τ (defined analogously to 3.14) is considerably
wider than that for the measured increments Pτ . This deviation is expressed in
more detail in figures 3.14(a) and (b), showing the standard deviation and the
logarithmic kurtosis ln(F/3) of the measured and reconstructed increment pdfs as
a function of the time separation τ . The pdfs for the measured power increments
are over a wide range of values τ narrower, i.e. characterized by a smaller standard
deviation, but at the same time more intermittent due to a larger kurtosis than the
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Figure 3.12: Pdfs of the increments Pτ for different time increments τ – from the bottom
up τ = 1 s, τ = 5 s and τ = 30 s. The two lower pdfs are shifted in vertical direction for
clarity of presentation.

pdfs for the reconstructed increments. Note that the large values of ln(F/3) for the
measured increments in the range of τ from 1 s to approximately 20 s are caused
by the additional structures denoted as bumps above.
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Figure 3.13: Pdfs for the measured and reconstructed power increments, Pτ (black) and
Pp.c.,τ (grey), respectively, for τ = 20 s.

The simple reconstruction model I applied is determined as a model without
any relaxation of power output, i.e. an instantaneous response of the power to the
wind speed. Consequently, I have concluded that the observed deviations between
the model and respective measurements are due to a finite relaxation effect that
is certainly inherent in the measured data. It is straightforward to show that a
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Figure 3.14: (a) Standard deviation σP and (b) logarithmic kurtosis ln(F/3) for the pdfs
of the increments Pτ (black) and Pp.c.,τ (grey) as function of the time increment.

simple relaxation model for the power response introduces increment pdfs that are
narrower but more intermittent than those for simply applying a power curve on
the wind speed time series. I propose such a relaxation model in the next section,
and show how it can be utilized to define a dynamical power characteristic.
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3.3 Definition and reconstruction of a dynamical
power characteristic

3.3.1 Stochastic relaxation model

According to [Anahua et al 2008], I propose to model the dynamics of a wind tur-
bine’s power output as a set of univariate Langevin processes given by the stochastic
differential equation

d

dt
P (t) = hi(P, t) +

√
gi(P, t) Γi(t) (3.15)

for each fixed value of wind speed ui. The terms hi and gi are arbitrary functions
of the power output P at time t, and Γi(t) is a noise process. The wind speed is a
parameter, as indicated by the index i, but does not act as a second variable, so that
this model corresponds to a quasi-onedimensional approach. The conditioning on
the wind speed is realized by applying a wind speed binning with a fixed bin width,
as it is introduced in the standard IEC 61400-12-1 [IEC 2005a]. The deterministic
part of the dynamical equation (3.15) describes the relaxation behaviour of the
system with respect to one or more steady states that are also referred to as fixed
points. For only one fixed point and a linear relaxation, we write

hi(P, t) = −αi[P (t)− PFP(ui)] (3.16)

where αi is a relaxation constant and PFP(ui) denotes the fixed point in the wind
speed bin around ui. For a more general relaxation behaviour, αi may refer to an
arbitrary nonlinear function of the difference between the actual power value and
the respective steady state. The wind speed fluctuations act as a noisy driving force
in this model, and induce a kind of switch-over between the single wind speed bins
and the respective one-dimensional Langevin models.

Due to the assumption that (3.15) describes a Langevin process and Γi(t) ac-
cordingly corresponds to a Langevin force defined as Gaussian distributed and δ-
correlated white noise (〈Γi(t)〉 = 0 and 〈Γi(t1)Γj(t2)〉 = 2δijδ(t1 − t2) for the two
latter conditions), the functions hi(P, t) and gi(P, t) equate drift and diffusion coef-
ficients, i.e. hi(P, t) ≡ D(1)

i (P, t) and gi(P, t) ≡ D(2)
i (P, t), and can be reconstructed

directly from a corresponding set of data – as discussed in Chapter 1 (section 1.2).
I elaborate on the application of this reconstruction scheme in the next section.
Firstly, I want to discuss how this simple model can be utilized to study typical
effects that are found in the context of estimating power curves for wind turbines.

In [Böttcher et al 2007b], the relaxation model (3.15, 3.16) is integrated together
with a theoretical power curve that is defined according to

PFP(u) :=
{
au3 for u < urated

Prated for u ≥ urated
(3.17)

to obtain numerical power output data. The constant a is related to the values
of rated power and rated wind speed according to a = Prated/u

3
rated, determining

a continuous transition. The wind speed data is either simulated as well, or a
measured time series is used. Figure 3.15 illustrates the considered model. The
arrows indicate the drift field, i.e. the values D(1)

i (Pj) for each wind speed bin ui
and each power bin Pj , describing the relaxation towards the theoretical power
curve. The power curve corresponds with the discrete fixed points PFP(ui) for the
single wind speed bins.

I have applied this model to demonstrate the systematic errors of a power curve
that is reconstructed by simple averaging procedures, and their relation to the
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Figure 3.15: Illustration of relaxation model. The arrows indicate the values of the

drift field D
(1)
i (Pj) for the wind speed bin ui and the power bin Pj , that describes the

relaxation towards the theoretical power curve (given by the line) – here for a linear
relaxation function with α = 0.1. The dots denote the fixed points PFP(ui) for the single
wind speed bins.

relaxation effect. For this purpose, I took a time series of measured wind speed
data (10 successive days, sampled with a frequency of 10 Hz and with an average
turbulence intensity of Iu ≈ 0.13 – cf. Appendix B) and simulated a respective time
series of power output. I considered a linear relaxation model according to (3.15)
and (3.16) with αi = α = 0.1 and gi(P, t) = β = 0.01 for each wind speed bin ui, and
the theoretical power curve defined in (3.17) with urated = 12 m/s and Prated = 1.
From the simulated data, I firstly reconstructed a power curve due the IEC 61400-
12-1 standard [IEC 2005a], i.e. calculating the average values over periods of 10
min for the wind speed and power output and subsequently applying the method
of bins. As second approach, I calculated a short-term averaged power curve by
directly applying the method of bins to the high-frequency data. These two curves
are shown in figures 3.16(a–c) as dashed and dot-dashed lines in comparison to the
theoretical power curve (defined according to (3.17)) that is given by the solid line.
Both reconstructed curves show significant deviations from the theoretical curve,
especially in the nonlinear regions of the power curve. I simulated a second time
series of power output by simply inserting the wind speed data into the definition of
the theoretical power curve, and again derived the power curve due to IEC 61400-12-
1 as well as the short-term averaged curve from the simulated data set. The results
are shown as open circles and triangles in figures 3.16(a–c). The corresponding
power curve due to the IEC standard for this second data set shows almost exactly
the same deviations as that for the first data set, whereas the deviations for the
short-term averaged curve vanish.

This simple example reveals that the systematic errors of the estimating proce-
dure due to IEC 61400-12-1 are definitely caused by the averaging over periods of
10 min and neglecting at this the asymmetric transfer of fluctuations from the wind
speed to the power output. The deviations of a power curve that is directly recon-
structed from high-frequency data however result from the finite response behaviour
of the system. The latter vanish when the sampling rate of the data, to that the
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Figure 3.16: Reconstructed power curves for measured wind speed and numerical power
output data with (broken lines) and without relaxation (symbols) – for details about the
two used models see the text – in comparison to the theoretical curve (solid line, grey).
Dashed line and open circles for reconstruction according to the IEC 61400-12-1 standard,
dotdashed line and open triangles for applying the method of bins directly to the high-
frequency data. Figures (b) and (c) are close-up views of the entire curves in (a).

method of bins is applied, is larger than the time constant of the relaxation dynam-
ics – with the drawback that then the above mentioned averaging errors emerge.

In [Burton et al 2001], the observed effect of rotating the power curve in clock-
wise direction, found here as consequence of the finite relaxation dynamics in the
high-frequency data, is illustrated by considering the correlation between wind speed
and power output data for high sampling rates. A respective correction is proposed
that accounts for the respective correlation coefficient that is derived on the basis
of the measured data. That is, the final effect of the decorrelation is utilized to
find an appropriate correction but not the actual cause in terms of the relaxation
dynamics. In this thesis, in contrast, a reconstruction scheme is presented that is
based on the latter aspect.

3.3.2 Reconstruction of dynamical power characteristic

If the power conversion dynamics of a wind turbine, i.e. the process described by
the time series P (t) in relation to a wind speed u(t), is actually given by a set of
Langevin processes (3.15), it is straightforward to apply the reconstruction scheme
outlined in Chapter 1 of this thesis, and reconstruct the effective dynamical equa-
tions directly from a set of measured data. In particular, the obtained relaxation
dynamics determined by the drift coefficient for each wind speed bin and the respec-
tive fixed points can be utilized to define a power characteristic for the investigated
WECS. In this regard, the definition of a dynamical power curve was introduced
in [Anahua et al 2008]. In this section, I outline this approach with some minor
modifications and illustrate its application for a set of measured data. The method
is basically organized in five steps – the data selection, the calculation of the con-
ditional moments, the estimation of the drift coefficients, the fixed-point analysis,
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and finally the presentation of the results. The data we analyzed consists of wind
speed, wind direction and power output time series, measured simultaneously over
a period of 22 successive days and sampled with a frequency of 1 Hz – for a detailed
description see Appendix B. A discussion of the model, especially with regard to
its applicability, possible restrictions and specific requirements from the theoretical
background, is given in the following section.

Data selection Requirements regarding the quality of the data are adopted from
the standard IEC 61400-12-1 [IEC 2005a], and may be considered in terms of re-
spective category B uncertainties if the necessary information is available. For the
data set analyzed here, this kind of information has been not available, so that the
corresponding part of evaluation of uncertainty had to be neglected. The effective
sampling rate of the data shall be in the range of seconds, a minimum frequency of
1 Hz is suggested from our side. In general – to apply the method of reconstruction,
it is necessary that the considered process is oversampled with respect to its relax-
ation time. Based on experience, a factor of 10 is at this a minimum requirement.
Preferably, the data shall be sampled successively, discontinuities must be marked
in any case. Data that is considered to be not valid due to a corresponding status
signal for the WECS or similar criteria is rejected. In the same manner, data points
are excluded for that the measured wind direction lies outside the valid wind sector
that is defined in accordance with IEC 61400-12-1. The data selection is directly
implemented in the algorithm. If air density or pressure and temperature data is
available, a data normalization either for the wind speed or the power data is rec-
ommended. The remaining data is binned for the analysis with respect to both
the wind speed and the power values. For the wind speed binning a bin width of
0.5 m/s is fixed, the width of the power bins is variable. The data shall be evenly
distributed over the range of wind speed values. It is recommended to illustrate the
distribution of valid data e.g. by means of a density plot.

Calculation of conditional moments For each wind speed and each power bin
the conditional moments

M
(n)
ij (P, τ) = 〈[P (t+ τ)− P (t)]n|P (t) = Pj , u(t) = ui〉 (3.18)

(n = 1, 2) are calculated for different values of τ . For the binning only the points
u(t) and P (t) are decisive but not the values at time t + τ . The errors for the
conditional moments are defined as common standard errors.

Estimation of drift coefficients To estimate the coefficients D
(1)
i (P ) and

D
(2)
i (P ), the values for the conditional moments are fitted by a linear regression

over a specified range of values τ ∈ [τ1, τN ], as illustrated in figure 3.17. The slope
of the linear fit gives an estimate for the respective coefficient. Note that this is an
approximation of the limit

D
(n)
i (P ) =

1
n!

lim
τ→0

1
τ
M

(n)
ij (P, τ) (3.19)

(cf. Chapter 2). The range for the fitting is determined as relevant range of time
scales for the considered dynamics, but its definition is to some extent arbitrary. It
constitutes a characteristic parameter for a specific type of WECS and a particular
measurement setup.

To the reconstruction of the power characteristic only the values of the drift coef-
ficients D(1)

i (P ) are of interest, the values of D(2)
i (P ) however are used to determine
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Figure 3.17: Estimation of the drift coefficient by applying a linear fit to the first condi-
tional moment for a specified range of τ . Here for the wind speed bin ui=(6.75±0.25)m/s
and the power bin Pj/Prated=0.05±0.01 of the analyzed set of measured data. As range
for the fitting, we determined τ ∈ [5 s, 10 s] (marked by the grey box).

the errors σ[D(1)
i (P )]. According to [Kleinhans & Friedrich 2007], the standard er-

ror of the drift coefficient for a Langevin process is given by

σ̃[D(1)
i (P )] =

√
2
τ

D
(2)
i (P )
N

− (D(1)
i (P ))2

N
, (3.20)

where N is the number of data points in the bin. The first term corresponds to a
common standard error for a set of independent random numbers. The reduction
by the second term stems from the finite correlations induced by the drift term.
To obtain the total error for the estimated drift coefficient, we have to additionally
consider the error of the linear regression. The entire error σ[D(1)

i (P )] results from
a squared summation of the two uncertainties.

Fixed-point analysis The fixed points of the relaxation dynamics are defined as
points with zero drift, i.e.

D
(1)
i (PFP) ≡ 0 . (3.21)

For the present analysis, only the stable fixed points determined by a negative slope
dD

(1)
i (PFP)/dt < 0 are considered. Figure 3.18(a) shows the behaviour of the drift

coefficient as function of the power values for an exemplary wind speed bin. The
discretization of the horizontal axis due to the power binning as well as the errors
in vertical direction make a precise estimation of the fixed point as zero-crossing of
the drift function difficult. To overcome this problem, Anahua et al. proposed to
derive instead the drift potential

φ
D

(1)
i

(P ) := −
∫ P

dP ′D
(1)
i (P ′) , (3.22)

apply either before or after the integration a spline, i.e. a polynomial interpolation,
and determine the fixed points as the minima of φ

D
(1)
i

(P ) [Anahua et al 2008]. The
problem of this procedure is however that the lower limit of the integral is not
explicitly defined but may be chosen arbitrarily. In the same manner, the absolute
values for the uncertainty of the drift potential depend on the definition of the lower
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Figure 3.18: Illustration of fixed-point analysis. Figure (a) shows the values of the drift

coefficient D
(1)
i (Pj) for the single power bins Pi in the wind speed bin ui=(7.25±0.25)m/s.

Figure (b) is a close-up view and exemplifies the estimations of the fixed point by applying

cubic splines to the values D
(1)
i (Pj) as well as to its upper and lower limits (dashed lines).

The resulting fixed point is given by the black dot on the horizontal line of zero drift, the
respective error by the arrow.

bound for the integral. On this account, I decided to estimate the fixed points
not from the drift potential but directly from the drift coefficient after applying
a highly resolved spline. This procedure of a local interpolation is illustrated in
figure 3.18(b). The values for the drift coefficient as well as the upper and the lower
limits of the respective errors are interpolated by cubic splines. For each of the
three resulting curves the point with the smallest deviation to zero is determined,
corresponding to the fixed point and its upper and lower limit.

Presentation of the results The dynamical power characteristic is given by
the fixed points, that also represent the dynamical power curve, together with the
drift field that consists of the values D(1)

i (Pj) for each wind speed bin ui and each
power bin Pj . Figures 3.19(a) and (b) show the respective results for the analyzed
data set for two different power binnings. It is obvious that the denoted errors for
the fixed points are essential for the evaluation of the results. They determine, for
instance, if an obtained fixed point corresponds to a clearly defined steady state or
rather a less distinct band. Similarly, particular fixed points may be evaluated by
considering them in respect to the displayed drift field that reflects the distribution
of data. In this way, boundary effects are potentially revealed.
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Figure 3.19: Dynamical power characteristic for two different power binnings – (a) with
a bin width of Prated/35, and (b) Prated/60. The arrows denote the drift field defined by

the values D
(1)
i (Pj) for each wind speed bin ui and each power bin Pj , and the dots give

the (stable) fixed points of the relaxation dynamics.
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3.4 Discussion of the model

The dynamical model for the power performance of a WECS, that is proposed in
this chapter, corresponds to a phenomenological approach, i.e. the system is solely
described on the basis of the empirical data without making use of further theoretical
assumptions than the general stochastic model. The WECS is considered to be a
complex system, and its power performance dynamics is modelled in an effective
way but not in all details. The separation of the dynamics into a deterministic and
a stochastic part, as given by the Langevin approach, allows for an at least rough
classification of system-specific and site-dependent effects – where the former are
given by the drift and the latter by means of the diffusion in the proposed model.
Incorporating a stochastic component in the dynamical description, in this way,
enables a flexible modelling of the impact of the turbulent wind structures on the
power performance.

At the same time, it is obvious that the proposed model has certain limits
that, correspondingly, may affect the robustness and the reliability of the obtained
dynamical power characteristic. It is the purpose of this section to discuss these
limits and provide in some respects a scope for the applied modelling. At this, I
dwell on the quality of the results by presenting three different self-consistency tests
for the obtained results, the applicability of the model with regard to technical as
well as physical aspects discussing in particular the determination of an appropriate
time scale of description as well as the representativity of the considered wind speed,
and finally comment on the benefit of the dynamical approach, in particular with
respect to the relevance of the reconstructed dynamical power characteristic.

3.4.1 Self-consistency

With self-consistency the accuracy of the reconstructed results in comparison to
the intrinsic behaviour that actually determines the investigated process is meant.
There are different ways to test the self-consistency of the reconstructed effective
dynamical model and the results for the dynamical power characteristic – I present
three different approaches here.

The first approach is to test the method of reconstruction on the basis of nu-
merical data obtained from the introduced relaxation model (3.15, 3.16) and the
theoretical power curve defined according to (3.17). Results for the reconstructed
fixed points in comparison to the theoretical curve used for the simulation are
shown in figures 3.20(a–c). For the most regions of the power curve, the recon-
structed values well agree with the theoretical ones. In the range of the transition
from partial load to full load at rated wind speed, i.e. at the strongest nonlinear-
ity of the power curve, there are however significant deviations. These deviations
are due to the non-stationarity of the wind speed in combination with the discrete
wind speed bins. Accordingly, they increase with the turbulence intensity of the
wind speed data. They are particularly pronounced for a power curve with a sharp
non-differentiable edge as in the definition (3.17). For a smoother transition, that
is probably more realistic for experimental data, the deviations are considerably
smaller and may be neglected in most instances (see [Gottschall & Peinke 2007], as
well as [Gottschall & Peinke 2008a] and Appendix A).

For measured data, a comparison of the reconstructed fixed points with a theo-
retical power curve is normally not possible. Even the power curves that are pro-
vided by the manufacturers are, in general, only either measured curves or based
on simple blade element momentum (BEM) models. What can be done for our
stochastic approach, and this is the second procedure of testing the self-consistency
of the obtained results I present here, is to check the assumptions for the appli-
cation of the Langevin model with the results from the reconstruction. That is,
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(c)

Figure 3.20: Reconstructed fixed points (symbols with error bars) for numerical power
output data, simulated on the basis of measured wind speed data (10 successive days,
sampled with a frequency of 10 Hz and with an average turbulence intensity of Iu ≈ 0.13)
and a theoretical power curve (solid line) as input for the simulation – see (3.15) with
(3.17). Figures (b) and (c) are close-up views of the entire curve in (a).

one reconstructs the noise process Γi(t) for a fixed wind speed bin ui by transform-
ing (3.15) and inserting the derived results for the drift and diffusion coefficient,
D

(1)
i (Pj) and D

(2)
i (Pj), respectively. Subsequently, one investigates its properties,

in particular the respective probability density and autocorrelation functions. For
the application of the Langevin approach, a δ-correlated and Gaussian distributed
white noise process is required. For the data I analyzed in 3.3.2 (see also Appendix
B), I reconstructed Γi(t) for different wind speed bins, each with a bin width of
0.5 m/s. The requirement of the δ-correlation is approximately fulfilled for each
investigated case, deviations in terms of a non-vanishing correlation coefficient for
non-zero time differences between two signals are within the uncertainty of mea-
surement. However, the assumption of Gaussian pdfs for the single time series Γi(t)
does not apply, as exemplarily shown in figure 3.21 for three different wind speed
bins ui. In addition to an intermittent shape, the pdfs are characterized by addi-
tional peak values around zero and non-vanishing probabilities for large values of
Γi. The distinctive peak around zero is essentially related to the discretization of
the power data, i.e. the limited resolution of the time series P (t). From this ob-
servations, it can be concluded that the investigated power performance dynamics
does not follow a Langevin process in a strict sense. Consequently, a respective
reconstruction is definitely only an approximation. This approximation may be suf-
ficient to comprehend the drift dynamics (cf. Chapter 2) since the reconstruction
of the drift dynamics solely requires a vanishing average of the noise process but
not the δ-correlation and the Gaussian distribution – as directly deduced from the
respective Langevin equation. The reconstruction of the diffusion coefficient, on
the other side, is essentially affected by the missing properties. This also has to
be considered for the third kind of self-consistency test we present in the following
paragraph.

A third alternative to test the self-consistency of the obtained results for the
power characteristic is to simulate a new data set on the basis of the reconstructed
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Figure 3.21: The pdfs of the reconstructed noise processes Γi(t) for the wind speed bins
ui = (6.25 ± 0.25)m/s (�), ui = (9.25 ± 0.25)m/s (4), and ui = (12.25 ± 0.25)m/s (+).
The resulting time series consist of approximately 104·103, 64·103 and 28·103 data points,
respectively.

drift and diffusion coefficients, and compare the properties of this data set with those
for the empirical data. In detail, this means to integrate (3.15) with the estimated
values for D(1)

i (Pj) and D
(2)
i (Pj) and a Gaussian distributed and δ-correlated ran-

dom process Γi(t) with zero mean and variance two. I performed this reconstruction
for the considered set of measured wind speed and power output data. From the
reconstructed data, I derived the increment time series Pτ (t) for different values of τ
and compared the corresponding pdfs p(Pτ ) with those for the empirical increments
that were already analyzed in section 3.2.3. The results for four different values of
τ from 1 s to 30 s are shown in figures 3.22(a) and (b). It is obvious that the model
does not reproduce the bump structures of the empirical data. This has been in line
with our expectations since these structures are due to turbine- or setup-specific ef-
fects that are not captured by the proposed model. Furthermore, the reconstructed
increments are symmetrically distributed around zero whereas the empirical incre-
ments have an asymmetric pdf. Apart from these specific structures, the width of
the pdfs for the reconstructed increments increases much faster with τ than that
for the empirical data. Accordingly large is the deviation in the width of the two
pdfs already for τ = 30 s (see figure 3.22(b)). Instead of comparing the increment
distributions, it is also possible to compare directly the pdfs of the measured and
the reconstructed power data P (t) and in particular their mean values. The result
is quite similar – the pdfs agree roughly but not perfectly, and specific structures
are not reconstructed by means of the stochastic model (cf. [Anahua et al 2008]).

I complete the discussion of the self-consistency of our model with the following
conclusions. On the basis of numerical data, I have shown that the proposed scheme
allows for an appropriate reconstruction of the theoretical power curve with respect
to that the data has been simulated. Regarding the application to measured data, I
maintain that the noise process separated from the analyzed empirical data does not
correspond to Gaussian distributed noise, and a data reconstruction applying such
an ideal noise process does not give results that perfectly agree with the empirical
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Figure 3.22: Pdfs of the empirical (black) and reconstructed (grey) increments Pτ (t) for
different values of τ – (a) τ = 1 s and τ = 5 s, (b) τ = 15 s and τ = 30 s (from the
bottom up in both cases). The upper pdfs are shifted in vertical direction for clarity of
presentation. For the reconstruction we derived drift and diffusion coefficients according
to (3.18–3.19) and inserted them into (3.15).

data. The latter was shown for the increments derived for the measured as well as
for the reconstructed data of power output. Thereby, I have deduce that the pdfs
for the reconstructed and the empirical increments agree to a varying degree for
different values of the time increment τ . That is, the quality of the reconstruction
depends on the considered time scale. At the same time, it is obvious that to
model a time series not only on a specific scale but for a range of scales the simple
procedure I performed here does not suffice and a multi-scale approach is necessary
(cf. [Nawroth & Peinke 2006]).

3.4.2 Time scale of description

Following up the preceding point of discussion, the question arises to what extent
the specification of a certain time scale is of importance for the modelling and
reconstruction of the power performance dynamics. The dynamical model (3.15)
is set up as a response model for the power output with regard to the wind speed
fluctuations. It is however not clear on which time scale this response actually
occurs. In addition, wind speed and power output, defining together the power
performance, are given by two separately sampled time series that may correspond
to two different time scales of description. Considering only the time series of the
power output and its sampling rate as decisive time scale, one comes to the following
conclusion. If a too large time scale of description is chosen, important information
on the dynamics may be ignored. A too small scale, on the other side, is related to an
increased noise level but is, in general1 , not a problem for the Langevin approach
since the additional noise is separated with the stochastic diffusion component –
a kind of oversampling is actually required to apply the proposed reconstruction
scheme. The fluctuations of the wind speed affect the modelling of the power
output dynamics by means of the wind speed binning, that is introduced for the
dynamical power performance modelling in order to overcome the problem of the
non-stationarity of the data. A higher variability of the wind speed induces a more

1except for processes that are characterized by a finite Markov length scale that defines a lower
limit in this regard (cf. Chapter 1)
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Figure 3.23: Dynamical power characteristic for the averaged wind speed ũT
(T = 60 s) – the width of the power bins is Prated/60. The arrows denote the drift

field defined by the values D
(1)
i (Pj) for each wind speed bin ui and each power bin Pj , and

the dots give the (stable) fixed points of the relaxation dynamics.

frequent switching between the single wind speed bins. Applying a kind of filter to
the measured wind speed data, thus, affects the partitioning of the power output
data with respect to the different wind speed bins.

That this may affect the results for the reconstructed power characteristic is
demonstrated with the following approach. I applied a two-sided moving average
to the wind speed data u(t) to obtain the time series ũT (t), i.e.

ũT (t) :=
1

T + 1

T/2∑
τ=−T/2

u(t− τ) , (3.23)

using different values for the size of the averaging window T . The moving average
acts as a low-pass filter on the wind speed fluctuations, and the size of the window
defines a respective time scale.

I derived the dynamical power characteristic for the time series ũT (t) and P (t).
The results for a window size of T = 60 s are shown in figure 3.23. The resulting dy-
namical power curve is considerably smoother than that for the non-averaged wind
speed time series in figure 3.19(b) – for both results I used the same power binning.
Likewise, the overall uncertainty of the power curve is smaller when considering the
averaged wind speed. Adding up the individual errors for all obtained fixed points,
I have obtained to a value of 2.84 for the power curve in figure 3.19(b) and only
1.09 for that in figure 3.23 (both in units of Prated). With respect to the single
fixed points, this gives an averaged value of 0.056 and 0.028 per reconstructed fixed
point, respectively.

In [Wagner et al 2008] the quality of a certain power curve is determined as
its total or alternatively its average uncertainty that is defined by the standard
deviations for the points of the curve in the single wind speed bins, i.e. the values
I determined above. Adopting this definition of evaluation, it can be conclude that
the introduction of a moving average for the wind speed improves the results for
the dynamical power characteristic – at least for the specific data set we analyzed.
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The specification of a respective averaging window T is however to a large extent
arbitrary. I propose to include it in the definition of the reconstruction procedure
and fix it for a specific type of WECS and a particular measurement equipment
and setup. It is important to note at this point that we do not apply the moving
average to the power output data but solely to the time series of wind speed. The
data basis with respect to that the drift coefficient is derived remains the same but
is arranged in a modified order.

3.4.3 Representativity of considered wind speed

In the previous section, I discussed how the wind speed, that is considered for the
description of a wind turbine’s power performance, is best defined with respect to
an appropriate time scale. Following these descriptions, I consider in this section
two different spatial aspects that may influence the representativity of the hori-
zontal wind speed u(t) for the power performance modelling. A limitation of the
representativity may hereby either imply that the time series u(t) is systematically
incorrect with respect to the simultaneously measured power output, i.e. it reflects a
wind velocity that is systematically lower or higher than the wind velocity actually
acting on the wind turbine, or that there is a lack of correlation between u(t) and
the corresponding time series for the power output P (t). I address both issues here.
As first effect, I discuss the delay between the wind and the power measurement
that corresponds to a displacement in horizontal direction. The second aspect is the
effect of wind shear that causes an inaccuracy with respect to the vertical direction
of the wind field acting on the turbine. The section concludes with a general remark
on secondary variables.

Delay effects

Probably, the most obvious disturbance, affecting the representativity of the wind
speed time series u(t) for the evaluation of power performance, is given by the
spatial distance between the wind turbine and the wind measurement. Due to the
IEC 61400-12-1 standard, the meteorological mast equipped with the anemometer
may be between two and four times the rotor diameter away from the turbine, which
results in travelling times of 30 s and longer dependent on the size of the turbine and
the respective value of the wind speed. For this quantification, it is assumed that the
turbulent structures do not change or dissipate over the travelling distance and that
no new structures are formed – which is definitely a quite strong simplification. The
non-vanishing travelling times directly cause a lack of correlation between u(t) and
P (t). Applying an averaging procedure to the measured data with an averaging
period that is to a considerable degree larger than the delays between wind and
power measurement, the final results for the power curve are not affected by this
lack of correlation. This argument may apply to the standard procedure due to
IEC 61400-12-1 and similar approaches that are based on averages over periods
of at least 10 min. For a reconstruction procedure that is directly based on the
high-frequency data, however, this is not valid.

To evaluate the influence of the delay effects on the stochastic power perfor-
mance model, I studied the relation between the relaxation and the correlation
between u(t) and P (t) in more detail. The relaxation, defined by the drift term in
the Langevin equation for each wind speed bin, causes a shifting of the maximum
correlation between wind speed and power output – thus, the power output is de-
layed in comparison to the wind speed, and the respective time lag is the larger the
lower the relaxation, i.e. the smaller e.g. the absolute value of the constant αi in
the linear approximation (3.16) is. On the other hand, an additional delay caused
by the distance between wind measurement and turbine is reflected in a modified
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Figure 3.24: Correlation (defined as normalized cross correlation function) between wind
speed and power output time series for numerical data simulated on basis of linear relax-
ation model (αi=0.1, βi=0.01) according to (3.15–3.17) without additional delay (•), a
delay of δ = 30 time steps (�), δ = −25 time steps (4) and a random delay with a mean
of δ̄ = 15 and a standard deviation of σδ = 7 time steps (×).

drift term that is reconstructed with the procedure of stochastic modelling. This
is illustrated in figures 3.24–3.26, showing the correlation (defined as a normalized
cross correlation function) between wind speed and power output time series, the
reconstructed drift coefficient for an exemplary wind speed bin and the resulting
fixed points for all bins, derived for numerical data that is simulated on the basis
of the stochastic relaxation model (3.15–3.17), as it was already used above, with
and without additional delay between wind speed and power data. I performed this
analysis for a delay of δ = 30 time steps, i.e. the wind speed is measured before
the power output, δ = −25 time steps, i.e. the wind speed is measured after the
the power output, and for a random delay. For the latter, I generated a uniformly
distributed delay variable and smoothed it by a moving average with an averaging
window of 30 time steps, resulting in a Gaussian distributed variable with a mean
of δ̄ = 15 and a standard deviation of σδ = 7 time steps. Figure 3.24 indicates
that the effective delay between the two time series, determined by the point of
maximum correlation, is the sum of the delay caused by the finite relaxation of
the dynamical process and the subsequently added delay. Figures 3.25(a) and (b)
illustrate how adding an extra delay, in addition to that caused by the relaxation,
influences the reconstructed drift coefficient. Positive as well negative additional
delays effect a decrease of the absolute values for the drift coefficient, the uncertain-
ties of the reconstructed values hereby decrease. The reconstructed drift coefficient
hence corresponds to an effective relaxation that is the result of a combination of
the actual relaxation behaviour of the WECS and additional delays. Note that also
the reconstructed values of the drift coefficient for the model without additional
delay deviate from the theoretical function (see figure 3.25(a)). These deviations
are supposed to be caused by the effects discussed in Chapter 2, primarily the finite
(comparatively low) sampling rate the data is sampled with. The influences on the
complete dynamical power curve, defined by the fixed points for the single wind
speed bins, are shown figures 3.26(a) and (b). The estimation of the fixed points is
largely not affected by the changes in the slopes of the drift coefficients – assuming
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Figure 3.25: Reconstructed drift coefficients (for exemplary wind speed bin
ui=(9.75±0.25)m/s) for simulated data of stochastic relaxation process with and with-
out additional delays. For details see figure 3.24. The theoretical drift function, defined
by the input value of αi for the numerical model, is shown as decreasing solid line.
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Figure 3.26: Reconstructed dynamical power curves for simulated data of stochastic
relaxation process with and without additional delays. For details see figure 3.24.

that the delay caused by the spatial distance does not dominate the relaxation be-
haviour, and its magnitude is comparable to or smaller than the intrinsic relaxation.
Solely for large negative delays, the results show significant deviations for the fixed
points at the point of transition at rated wind speed (see curve denoted by triangles
in figure 3.26(b)).

To conclude, the effect that additional delays in the measurement are included
in an effective relaxation and approximately averaged out with respect to the fixed-
point analysis, even though increasing the uncertainty of the results, serves as an
essential criterion for the robustness of the reconstructed power characteristic. An
explicit correction, e.g. by quantifying the delay and considering it in an dynamical
delay equation (cf. section 1.4.), is not recommended against it. The delay does not
correspond to a constant value but is a fluctuating variable determined by the short-
term variations of wind speed and wind direction. Furthermore, these structures
largely alter over the distance between anemometer and wind turbine. Therefore,
it is obvious that it is unfeasible to quantify the actual short-term dynamics of the
delay variable and directly incorporate it in the dynamical relaxation model.
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Wind shear and other secondary variables

Another effect that may have a significant impact on the power performance mea-
surement is the wind shear in vertical direction of the flow field, i.e. a systematic
difference in the wind speeds for different heights. Commonly, a logarithmic wind
profile is supposed to describe the dependence of the wind speed from the height
above the surface. A consequence from this is that the main contribution of the
electrical power produced by the WECS stems from the atmospheric layer that lies
above the hub height of the turbine, which in turn also influences the correlation
between measured wind speed and power output [Ragwitz 2001]. This argument
raises the question how representative the wind speed measured at hub height as
only variable actually is. In [Wagner et al 2008] it is proposed to consider instead
an effective wind speed that is derived as an average of several wind speed time
series measured at different heights and weighted by the area of the corresponding
segment of the rotor swept area. In particular, it is shown that an additional mea-
surement of the wind speed above the hub height of the turbine definitely decreases
the overall uncertainty of a power curve derived on the basis of 10 min averages
in accordance with the standard IEC 61400-12-1. Due to a lack of data at a suffi-
cient number of different heights, I could not reconsider this investigations for our
dynamical approach.

It has to be noted that a simultaneous measurement of wind speeds with
anemometers at different heights is not common practice for power performance
testing yet, and probably too expensive to be a standard. A promising approach
is the utilization of LIDAR systems that are currently under investigation (see
[Wagner et al 2008] but also e.g. [Wächter et al 2008]).

In general, there are two ways to include secondary variables as for example the
wind shear in a reconstruction procedure for the power curve. On the one hand,
they can be handled as additional parameters and by introducing a further binning.
This however requires a data basis that increases with the number of bins for the
additional parameter as factor of multiplication. The alternative is to include them
in the definition of an effective wind speed. This is done with the air density in
the standard 61400-12-1 in terms of a data normalization and the averaging over
different heights in [Wagner et al 2008]. In order to introduce relevant secondary
variables to the dynamical power characteristic proposed in this thesis, I definitely
argue also for this second alternative.

There are other influences that significantly affect the power performance of a
wind turbine but for that none of both approaches is recommended – examples are
certain contaminations of the rotor blades, the effect of rain or icing. Situations
where these disturbances appear should rather be excluded from the data basis for
the analysis.

3.4.4 Relevance of the dynamical power characteristic

This section is concluded with a comment on the relevance of the dynamical power
characteristic, summarizing, at the same time, the points of discussion listed in
the preceding subsections. Based on the analysis of numerical data, it has been
argued that the proposed dynamical approach gives more accurate results for
the power curve than the standard procedure according to IEC 61400-12-1 (cf.
[Anahua et al 2008, Gottschall & Peinke 2007, Gottschall & Peinke 2008a]). The
results are however of a different kind. The resulting power characteristic corre-
sponds to a dynamical model that contains considerably more information than
solely the steady states of power performance. The reconstructed fixed points are
defined through their attractiveness but this needn’t imply that they actually define
the states of average performance. For an asymmetric drift function, for instance, it
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is obvious that mean value and fixed point are not identical. To estimate a quantity
as the annual energy production (AEP), consequently, the values of the dynamical
power curve should not be simply multiplied with the wind speed distribution as in
(3.3), but one rather should utilize the reconstructed effective dynamical equations
defined by drift and diffusion coefficients to simulate power output data on the basis
of a reference wind speed time series.

On the other hand, it has also been shown that the set of reconstructed Langevin
equations is only an approximation of the actual process dynamics – in particular,
the included noise process does not correspond to a well-defined Langevin force
which implies that the diffusion part of the dynamics is not reconstructed in an
appropriate way. Consequently, a simulation of power output data on the basis
of the estimated effective equations, including drift and diffusion, is not expected
to give reliable results. Since the final estimation of the fixed points is largely not
affected by the discussed influences, the resulting power characteristic is nonetheless
a promising tool to identify systematic relative changes in the power performance,
and therefore may be utilized for a monitoring analysis. Hereby, it should be kept in
mind that the relevance of the complete power characteristic is once more restricted
by the fact that the reconstruction procedure requires several definitions, as e.g. the
fitting range for the estimation of the drift and diffusion coefficients or the definition
of the considered wind speed, that are determined in an more or less arbitrary way.
Only an appropriately specified determination of these criteria ensures the respective
reproducibility.

In section 3.1.3, the introduction of a dynamical approach for the estimation of
a power characteristic has been motivated with reference to several dynamic effects
that must be considered when describing the power performance of a WECS on
small time scales. Some of them are covered by the simple dynamical relaxation
model, we proposed in 3.3.1 and discussed in this chapter, but not all of them.
The deterministic relaxation in the introduced set of Langevin equations models
the dynamic response behaviour of the WECS including the control dynamics. As
an effective relaxation it also incorporates the delay effects caused by a spatial
distance between turbine and wind measurement that do however not influence the
estimation of the fixed points for the most part, as stated above. Not covered are, on
the other side, systematic deviations for the reconstructed power performance that
may e.g. result from wind shear effects that induce an asymmetric distribution of
the wind speeds over the rotor area in vertical direction. Similar as for the standard
procedure according to IEC 61400-12-1, it must be discussed if these effects should
be considered by means of the definition of an effective wind speed.
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3.5 General potential of a stochastic fixed-point
analysis

The reconstruction of the dynamical power curve is based on the assumption that
the fixed points of the deterministic dynamics serve as characteristic points for the
described process. One of the most significant advantages of the definition of a
fixed point as steady state in comparison e.g. to a mean value or maximum, that
similarly may characterize a system and are more straightforward to determine, is
its flexibility. With flexibility I refer to two different aspects – the applicability of
the procedure to processes with multistable and asymmetric dynamics, respectively.

In particular, the definition of the fixed point is not restricted to processes with
only one stable state but can be applied to systems with more than one stable fixed
point in almost the same manner. This is demonstrated in figures 3.27(a–b) that
show the power characteristic and the dynamical power curve as well as the corre-
sponding curve due to the standard IEC 61400-12-1 for a MW-class turbine with a
multistable behaviour in the region of transition at the value of rated wind speed
(cf. [Gottschall & Peinke 2008b]). It is evident that the reconstruction procedure
due to the IEC standard cannot detect more than one characteristic state per wind
speed bin, and thus averages the multistability out (see figure 3.27(b)).
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Figure 3.27: (a) Dynamical power characteristic for an exemplary MW-class turbine with
multistable dynamics in the range of transition at rated wind speed. The arrows denote
the drift field defined by the values D

(1)
i (Pj), and the dots give the stable fixed points of

the relaxation dynamics. (b) Dynamical power curve, composed of stable fixed points, in
comparison to results due to IEC 61400-12-1 standard (triangles and dashed line).

Also for a process that is characterized by only one fixed point, the flexibility
of a stochastic fixed-point analysis is of particular importance. This particularly
becomes obvious for a process with asymmetric fluctuations. For the example of
the power performance of a wind turbine, asymmetric power fluctuations are caused
by a nonlinear transfer of wind fluctuations to the power output – i.e. the nonlin-
earities involve the asymmetries. The consequence is that a mean value is not well
defined for the resulting asymmetric process and affected by systematic deviations
(cf. [Gottschall & Peinke 2008a] and Appendix A, resp.).

A quite similar application, including such a nonlinear relaxation, is related to
the performance of a cup anemometer (cf. [Hölzer 2008]). The response dynamics
of a cup anemometer to incoming wind fluctuations is basically described by an
asymmetric dynamical process. The response behaviour to an increase in wind
speed is characterized by a faster relaxation than that to a decrease in wind speed
– this is also referred to as overspeeding effect. A simple averaging of the high-
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frequency signals from the cup anemometer thus results in an overestimation of the
actual wind speed. The need for considering the specific properties of this dynamic
response for free-wind conditions, in comparison to the static response measured in
typical calibration procedures performed in a wind tunnel, has already been stated
in [Antoniou et al 2001]. The dynamical approach, based on the reconstruction of
an effective Langevin equation, may provide the basis for an advanced calibration
procedure. Transferring the concept of a characteristic curve from the dynamical
power characteristic to this application, it is straightforward to define an appropriate
calibration procedure. The measured wind speed can be binned according to a
reference wind speed and related to the fixed point for the respective data set in each
bin. This is again a quasi-onedimensional approach that gives a two-dimensional
calibration characteristic.

A crucial point for the application of the stochastic fixed-point analysis is the
robustness of the derived fixed points. In Chapter 2, the influence of a finite resolu-
tion of the analyzed data as well as the presence of external measurement noise on
the reconstruction of the fixed points of the respective underlying process has been
discussed. Both investigated disturbances account for the problem that the recon-
structed values for the drift coefficient are initially only estimations before applying
a more complex optimization procedure. The quality of the estimates for the drift
coefficient directly influences the robustness of the respective fixed point. In this
chapter, these disturbances have been neglected so far since the fixed point is much
less affected by them than the values for the drift functions. Respective deviations
for the fixed points are supposed to be not significant in comparison to their total
uncertainty. A more detailed investigation is recommended for the future.

As last issue, I address the convergence of the fixed points in relation to the num-
ber of considered data points and compare this behaviour with that for a respective
mean value. For this, I again refer to the measured power performance data that
was used for the power performance analysis and is described in Appendix B. Figure
3.28 shows two kinds of averages and two different definitions of fixed points for the
power output as function of considered 10 min intervals of data for a specified wind
speed bin. Mean values were calculated as bin averages of the values averaged over
periods of 10 min according to IEC 61400-12-1, and as direct bin averages of the
high-frequency data (circles and crosses, resp., in figure 3.28) – accordingly, the data
was binned with respect to the 10 min averages of wind speed for the first case, and
for the second with respect to the highly sampled wind speed data. The estimated
fixed points differ in the point if the actually measured wind speed (full dots) is
considered as binning parameter or a respective moving average (triangles). Apart
from the systematic deviations, that are caused by asymmetries in the fluctuations,
as discussed above, and handled differently by the single approaches, the studied
quantities show also a different convergence behaviour. The bin average of the 10
min mean values as well as the fixed point for the averaged wind speed time series
as reference, converge faster to a certain value and show afterwards less fluctuations
than the two other quantities. For the specific convergence behaviour, it is thus of
essential importance with respect to which wind speed data the corresponding data
for the power output is binned. To achieve a good, i.e. a fast and robust conver-
gence, it is recommended to filter the wind speed data with respect to short-term
fluctuations, as done with the moving average. If a fixed point generally converges
faster or possibly less fast than a respective mean value is hard to say after this
analysis. The most relevant aspect, at least for this issue and this application, is
the way the non-stationarity of the wind speed is dealt with.
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Figure 3.28: Convergence behaviour of mean values and fixed points for the power output
in relation to the number of considered data points for the wind speed bin ui = (5.75±0.25)
m/s. Mean values are derived as bin averages of 10 min mean values (◦) and bin averages
of the high-frequency data (×), fixed points with respect to the actually measured wind
speed time series (•) and a respective moving average (4). The number of considered data
points is given as number of 10 min intervals or as sets of 600 data points, respectively.
For a description of the used data see Appendix B.
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3.6 Appendix A: How to improve the estimation
of power curves for wind turbines 2

We introduce a dynamical approach for the determination of power
curves for wind turbines and compare it with two common methods –
among them the standard procedure due to IEC 61400-12-1, i.e. the in-
ternational standard prepared and published by the International Elec-
trotechnical Commission. The main idea of the new method is to sepa-
rate the dynamics of a wind turbine into a deterministic and a stochas-
tic part, corresponding to the actual behaviour of the wind turbine and
external influences such as the turbulence of the wind, respectively. Par-
ticularly, the governing coefficients are reconstructed from the data, and
the power characteristic is extracted as the steady states of the determin-
istic behaviour. Our results suggest that a dynamical approach enables
to grasp the actual dynamics of a wind turbine and to gain most accurate
results for the power curve, independent of site-specific influences.

A.1. Introduction

With increasing importance of wind as sustainable energy source and, consequently,
the spreading of wind turbines as wind energy converter systems (WECS), wind en-
ergy research has become a new orientation. Physical findings have to be combined
with technical know-how. An improved understanding of the performance of a
WECS, as well as of e.g. the loads affecting certain parts of a wind turbine, can
only be achieved if we comprehend its fuel, the wind, in more details.

In the centre of our research stands the assessment of the wind turbine’s per-
formance, i.e. the description of the wind energy conversion process. The so-called
power curve, the electrical power output versus the wind speed, summarizes the
technical characteristics of the whole turbine and is approved to be the most im-
portant testimony for the wind turbine’s performance in the view of the operator.
The shape of a power curve is governed by the cubic relation between the wind speed
and the corresponding power in the wind up to the so-called rated wind speed where
the power takes a constant value until the turbine cuts out. The actual energy den-
sity of the wind is reduced by the energy not usable due to a physical limit and
additional losses due to several technical characteristics. (See e.g. [Hau 2005].) The
correct and effective determination of these effects is of central interest.

A standard method for the determination of wind turbine power curves is given
by [IEC 2005a], referred to as IEC 61400-12-1. This norm is an averaging procedure,
easily applicable if enough data is available. The resulting IEC curve is the common
tool to estimate a wind turbine’s energy yield. However, it cannot be used to
display e.g. the short-time fluctuations of the electrical power output induced by
turbulent wind conditions or to explain the orographic dependencies of a wind
turbine’s performance.

Recently, an alternative method for the estimation of wind power characteristics
has been established in [Anahua et al 2007, Anahua et al 2008]. The main idea is
to reconstruct the short-time dynamics of the power conversion process and to
determine the power curve as the steady states or fixed points of this process –
these results represent nothing else than the ideal performance for non-fluctuating
laminar wind conditions. Therefore, we have introduced the term dynamical power
curve. In detail, the dynamics of the WECS is considered to be a Markovian
stochastic process, and the wind speed is interpreted as a noisy driving force. The

2Published in a slightly modified version as J. Gottschall and J. Peinke: How to improve
the estimation of power curves for wind turbines. In: Environ. Res Lett. 3, 015005 (2008).
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crucial point of this method is to divide the dynamics into a deterministic and a
stochastic part. The stochastic part, given by dynamical noise, summarizes all the
otherwise unseizable microscopic interactions and enables a macroscopic description
of the considered open complex system. I.e. it takes also into account that the scalar
wind speed, measured at a meteorological mast, cannot represent the complete wind
field actually acting on the wind turbine. Following Haken [Haken 1983], this can
be regarded as a synergetic approach to complexity. For details about the general
method and other applications see e.g. [Friedrich et al 2000].

The aim of this paper is to show the advantages of the recently introduced
method of the dynamical power curve estimation, comparing it with two other
determination methods, namely the common IEC standard and the maximum prin-
ciple proposed in [Rauh et al 2007], and going back to certain examples of measured
and simulated data. Therefore, we first introduce the three considered methods in
more detail, performing then the comparison of methods and conclude with a short
discussion.

A.2. Dynamical power curve

The dynamical power curve approach is based on highly sampled data in order to
reconstruct the actual process dynamics on small timescales – for more details on
the short-term dynamics of the conversion process see [Gottschall & Peinke 2007].
Its basic idea is to describe the electrical power output P of the wind turbine as
a diffusion process, i.e. a stochastic process that satisfies the Markovian property
and that can be separated into a drift and a diffusion part. Then, a typical time
series can be presented as P (t) = PFP(u) + p(t), where PFP denotes a steady power
value dependent on the wind speed u (or rather a non-fluctuating steady state or
mean value of u, not further specified here), and p(t) refers to the corresponding
short-term fluctuations around this value caused by the wind turbulences and the
response of the WECS to these. The time series P (t) is assumed to be stationary
with respect to a certain wind speed interval. Therefore, the dynamics of P (t) is
analyzed for each selected wind speed interval or bin separately. (Note that the
mapping of the power values P (t) to the single wind speed bins is defined by the
actual wind speed u(t). A split-up of the wind speed into a mean value and short-
term fluctuations or another kind of filtering is not considered here. Fluctuations
are analyzed in terms of increments. In the end, the reconstructed value of PFP is
mapped to the average of all values u(t) lying in the corresponding bin.)

For the evolution in time of the variable P we formulate a set of Langevin
equations

d

dt
P (t) = D

(1)
i (P ) +

√
D

(2)
i (P ) Γi(t) (3.24)

where the index i refers to the wind speed bin defined by ui. D
(1)
i is called drift

coefficient and represents the deterministic part of the process, whereas the diffusion
coefficient D(2)

i together with the Langevin force Γi(t) representing δ-correlated
Gaussian white noise (〈Γi(t)〉 = 0 and 〈Γi(t1)Γj(t2)〉 = 2δijδ(t1 − t2)) describes its
stochastic part. The units of D(1)

i and D
(2)
i are [P ]s−1 and [P ]s−2, respectively,

with [P ] as the unit of P . The unit of Γi(t) arises from the relation Γ(t)dt = dW (t)
and dW (t)2 = dt where dW (t) is a Wiener process (see [Gardiner 1985]). A simple
relaxation model, as proposed in [Rauh et al 2007], would follow the equation

d

dt
P (t) = −αi [P (t)− PFP(ui)] +

√
βi Γi(t), (3.25)

where αi is a constant relaxation factor that quantizes a relaxation around the
steady state PFP driven by the wind speed variation, and βi the strength of additive
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dynamical noise. The dynamical equation is set up for each wind speed bin ui
separately.

A reconstruction of this dynamics enables the estimation of the values PFP(ui)
and with it the determination of the power characteristic. Following [Risken 1989],
the coefficients D(n)

i for n = 1, 2 are given by the conditional moments M (n)
ij that

can be directly calculated from the data according to

D
(n)
i (Pj) =

1
n!

lim
τ→0

1
τ
M

(n)
ij (τ) (3.26)

with M(n)
ij (τ) := 〈[P(t + τ)− P(t)]n〉 |P(t)=Pj (3.27)

where 〈...〉 denotes an ensemble average and |P (t)=Pj the condition that the stochas-
tic variable P (t) is in the bin Pj at time t. The binning for P , defined by the discrete
values Pj , is introduced analogously to the wind speed binning.

For small and finite τ , we make the approximation

M
(n)
ij (τ) ≈ n! τD(n)

i (Pj) +O(τ2), (3.28)

applying an Itô-Taylor series expansion. Depending on the process it might be
necessary to consider further higher-order terms. An exact derivation is given in
[Friedrich et al 2002].
If additional measurement noise is present, D(n)

i is best estimated by the extrapo-
lation

D
(n)
i (Pj) =

1
n!
M

(n)
ij (τ2)−M (n)

ij (τ1
τ2 − τ1

(3.29)

for suitable τ1 and τ2 (see [Böttcher et al 2006]).

Finally, a deterministic fixed-point analysis for each wind speed bin ui yields the
steady states PFP(ui), defined by D

(1)
j (P ) ≡ 0, and with it the dynamical power

curve.

A.3. Comparison with other determination methods

A.3.1. The IEC standard

In short, the standard method according to IEC 61400-12-1 [IEC 2005a] is defined
by relating the averages of wind speed and power output over 10 min, i.e.

〈u(t)〉10 min 7→ 〈P (t)〉10 min , (3.30)

and averaging in a second step all values lying in a wind speed bin of the width
of normally 0.5 m/s. Already in [Albers & Hinsch 1996] it has been argued that
this procedure does not account for the nonlinearity of the power characteristic.
Expressing the wind speed as u = ū+ u′ where ū is the mean value, i.e. ū = 〈u(t)〉,
and u′ the corresponding short-term fluctuations around this value with 〈u′(t)〉 = 0,
the power output P as a function of u can be expanded in the Taylor series

P (u) = P (ū) +
∂P (ū)
∂u

u′ +
1
2
∂2P (ū)
∂u2

u′2 +O(u′3). (3.31)

Assuming that the fluctuations u′(t) are symmetric around ū, and neglecting the
terms O(u′3), one obtains for the averaged power output

〈P (u)〉 = P (ū) +
1
2
∂2P (ū)
∂u2

σ2 (3.32)
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Figure 3.29: Reconstructed power curves for simulated data, (a) complete curve and (b)
cutout, for different values of turbulence intensity. Results according to IEC standard are
given by open symbols, stationary states according to dynamical method by full symbols
(rectangle for I = 0.10 and circle for I = 0.20). The solid line (red) denotes the exact
power curve, i.e. the input characteristic for our model.

with σ2 =
〈
u′2(t)

〉
.

It follows 〈P (u)〉 6= P (〈u〉) for a nonlinear function P (ū) and non-vanishing
σ. Defining the turbulence intensity I = σ/ū, one rather finds a correction term
proportional to I2 for P (ū) known. The inequality above indicates that symmetric
wind speed fluctuations, as they are assumed, are transferred to asymmetric power
fluctuations due to the nonlinearity of the power curve. It follows that a linear
averaging procedure does not give exact results.

To illustrate this discrepancy, we simulated wind speed and power output data,
using a simple relaxation model as given by (3.25) with typical parameter values
we obtained from the analysis of measured data. We performed the simulation for
different values of turbulence intensity, and reconstructed the power characteristic
according to both the IEC standard procedure and the dynamical method. Results
are shown in figure 3.29.

The systematic deviations of the results following the IEC recommendations
from the real power curve, i.e. the input characteristic for our model, are evident.
Even though the result of the dynamical method is not affected by the mentioned
averaging problem, there is similarly a small discrepancy. This is due to a non-
stationarity of the data induced by the predetermined wind speed binning, and
increases with the turbulence intensity. However, it is much smaller than the errors
of the IEC method, and for our set of measured data (see below) it is negligible.

A.3.2. Maximum principle according to Rauh

Rauh et al. proposed an even simpler method to determine the power curve of a
wind turbine [Rauh et al 2007]. The idea is to define an empirical power curve by
the location where, in a given wind speed bin, the maximal density of points P (tn)
is found. I.e. the power curve is given by the points

{
ui, Pk(i)

}
, where i is the

number of the speed bin and k(i) denotes the power bin with

Nk :=
∑
n

Θ(P (tn)− Pk) Θ(u(tn)− ui) and Nk(i) ≥ Nk, (3.33)
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where Θ(x) is a Heaviside function defined by

Θ(x) =
{

1 if −∆/2 ≤ x < ∆/2 with the particular bin width ∆
0 else. (3.34)

In words, we determine for each power bin k the number of events Nk, counting the
points P (tn) lying in the respective bin. The largest number of points is denoted by
Nk(i), where k(i) is the sought bin with the extremal property and, correspondingly,
Pk(i) the point of the power curve. (The values ui and Pk can be defined either by
the mid of the bin or by the mean value of the points lying in it.) Rauh et al. argue
that this extremal property is expected if the power curve is an attractor.

To show the weakness of this method, we assume again that P (t) can be de-
scribed by a diffusion process and follows an equation as given by (3.24). As al-
ternative to the Langevin equation, a diffusion process can also be described by a
Fokker-Planck equation (see [Risken 1989])

∂p(P, t)
∂t

=
{
− ∂

∂P
D(1)(P ) +

∂2

∂P 2
D(2)(P )

}
p(P, t) = − ∂

∂P
S(P, t). (3.35)

D(1)(P ) and D(2)(P ) are the coefficients defined in (3.26), the index i is omitted
here. The specific kinds of description by a Fokker-Planck equation and a Langevin
equation are equivalent – while the Langevin equation is a stochastic differential
equation for the state variable and describes the actual trajectory of this variable,
the Fokker-Planck equation is a partial differential equation for the probability
density p(P, t) of the state variable evolving in time. For S = const, we obtain the
stationary solution

pstat(P ) =
N

D(2)(P )
exp

[ ∫ P D(1)(P̃ )
D(2)(P̃ )

dP̃

]
(3.36)

with the normalization constant N .
The proceeding is now to investigate under which conditions the point of maxi-

mal density Pmax is equal to the steady state PFP, i.e. the dynamical power curve
equals the power curve according to Rauh’s maximum principle. For this purpose,
we differentiate pstat(P ) with respect to P and set it to zero. Since the exponential
term is always > 0 and assuming that the lower integration term vanishes, we end
up with

N
(D(2)(Pmax))2

[
D(1)(Pmax)− ∂

∂P
D(2)(Pmax)

]
= 0. (3.37)

Because D(2)(P ) > 0 essentially, Pmax has to fulfil D(1)(Pmax) =
∂/∂P

{
D(2)(Pmax)

}
. The definition of the fixed point provides D(1)(PFP) ≡ 0.

That means that the point of maximal density Pmax equals only the steady state
if its derivative with respect to P vanishes, i.e. for D(2)(P ) = const or if D(2)(P )
has an extremum for PFP. We call this type of dynamical noise ideal noise.
Consequently, if a diffusion function D(2) does not satisfy this condition, the
corresponding noise is called non-ideal.

The consequences for the reconstructed points of the power curve are, first, to
be demonstrated with a one-dimensional example of simulated data, see figure 3.30.
We integrated the Langevin equation for a process with D(1)(x) = −0.1 x+const,
and a step function for D(2)(x) as realization of non-ideal noise. This behaviour
is motivated by our observations for experimental data. The original functions as
well as the reconstructed points, according to (3–7), are shown in figures 3.30(a)
and (b). Examining the probability density function, shown in figure 3.30(c), we
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Figure 3.30: Simulated data and reconstruction of its dynamical coefficients to show
the weakness of Rauh’s maximum principle – (a) drift coefficient D(1)(x), (b) diffusion
coefficient D(2)(x) and (c) histogram of data. The fixed point is marked with a solid line,
the maximum with a dashed line, both in red.

find that the point of maximal density does not equal the actual fixed point of
relaxation, but is affected essentially by the shape of D(2). The reconstruction of
D(1), however, is not influenced and provides the correct result for the fixed point.
Large errors of the reconstructed coefficients for small values of x are due a small
amount of data (see histogram) – errors are proportional to 1/

√
N , where N is the

number of considered data points.
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Figure 3.31: Reconstructed power curves for simulated data, (a) complete curve and (b)
cutout. Results according to Rauh’s maximum principle are given by open symbols and
dotted line, stationary states according to dynamical method by full symbols. The solid
line (red) denotes the exact power curve, i.e. the input characteristic for our model. The
turbulence intensity of the simulated wind speed data is 0.10.

To transfer this one-dimensional example to a two-dimensional model for the
power characteristic, we use again the relaxation model given by (3.25), and replace
the constant diffusion coefficient βi by a step function as shown in figure 3.30(b)
with a decrease of diffusion strength to one tenth behind the step. As shown in
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Figure 3.32: Schematic comparison of power curves due to IEC standard (solid line),
reconstructed fixed points (full symbols) and (a) bin averages of 1 Hz data (dashed line),
respectively, (b) maxima according Rauh’s method (crosses) for measured data.

figures 3.31(a) and (b), Rauh’s maximum principle overestimates the points of the
power curve in the region of transition to the rated power, and seems overall to be
less accurate than the dynamical method.

A.3.3. A look at real data

To show the actual impact of the effects explained in the two last subsections, we
refer to a set of measured wind speed and power output data of a WECS. The data
had been obtained from a commercial MW-class turbine, located in a wind park
in the mid-western part of Germany. The wind speed data had been recorded by
an ultrasonic anemometer that was placed on a meteorological mast in front of the
turbine, satisfying the requirements stated in the IEC 61400-12-1 standard, with a
frequency of 50 Hz. The analyzed data set is sampled with a frequency of 1 Hz,
defined by the lower resolution for the recording of the power data. It consists of
approximately 1,800,000 data points, which corresponds to a measurement period
of three weeks. The averaged turbulence intensity of the wind speed data is 0.135.

At first, we compare the power curve estimated due to the IEC 61400-12-1 stan-
dard procedure with the dynamical power curve, i.e. the reconstructed fixed points.
Applying both methods to the measured data, we do not observe the expected
results according to 3.6 (see figure 3.32(a) in comparison to figure 3.29). The devi-
ations are rather directly opposed – for small wind speeds and a positive curvature
of the power curve the fixed points lie above the IEC curve, for large wind speeds
up to the rated value and a negative curvature they lie below. In figure 3.32(a), we
have additionally compared the IEC curve with a power curve that is obtained by
simply averaging the high-frequency data in each wind speed bin instead of taking
the average values over 10 min. The result of this alternative approach again shows
deviations of a different kind. For low wind speeds as well as for high wind speed
values, this high-frequency power curve lies below or respectively to the right of the
dynamical power curve. In comparison to the IEC curve it is rotated in clockwise
direction. To study these deviations in more detail, we analyzed the distributions
of power output data for the single wind speed bins. In figures 3.33(a) and (b), we
have compared the distribution of the original power data sampled by a frequency
of 1 Hz to the distribution of the averages over 10 min (binned according to the
corresponding wind speed averages) for two different wind speed bins. The his-
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Figure 3.33: Histograms of power output data for the bins (a) u = (5.75± 0.25)m/s and
(b) u = (12.25± 0.25)m/s. Distribution of average values over 10 min. in dark grey, and
of the high-frequency data (red) behind.

tograms for the high-frequency data are in both cases highly asymmetric. For low
wind speeds, there is an additional peak at the left side of the spectrum, for high
wind speeds at the right side – corresponding to the cut-in and rated values of the
power curve. The averaging procedure seems to cut off the part of the other side of
the distribution in each case. Hence, the mean value of the averages over 10 min is
shifted to the peak value. This phenomenological approach clarifies the impact of
asymmetries in the distributions of the power data that are primarily caused by the
specific transfer dynamics that determine the power conversion. It does however
not give an explanation of the specific behaviour observed in figure 3.32(a).

To inspect the application of Rauh’s maximum principle, we also refer to the
probability distribution of the high-sampled power output data for each single wind
speed bin, as exemplarily shown in figures 3.33(a) and (b). For wind speeds in the
range of the rated value, the histograms have basically the same shape as the one
for the simulated data in figure 3.30(c) (see figure 3.33(b)). The additional peaks
result in a distinctive kink for the whole power curve, that is not present for the
other approaches (see figure 3.32(b)). For the simulated data, the additional peak
in the histogram has been traced back to non-ideal noise, implemented as a step
function for the diffusion coefficient. Our observations let us suppose that similar
dynamics underlie the measured data. An explanation for this specific diffusion
dynamics are the control mechanisms of the wind turbine, especially at the point
of transition to the rated power. We conclude that the system-specific behaviour of
the WECS is not only present in the drift dynamics, as initially supposed, but also
in the diffusion part of the process dynamics.

A.4. Conclusions and discussion

To describe the performance of a WECS in an appropriate manner, that is the main
conclusion of our investigations, it is essential to grasp the actual dynamics of the
process. As demonstrated, the location of both the maximum and the mean value
is substantially influenced by the shape of the distribution of data. Simple sample
statistics seems not to be sufficient to capture its specific characteristics, a detailed
analysis of the underlying dynamics and a more flexible definition of a characteristic
steady state is rather necessary. Therefore, we have introduced a so-called dynam-
ical approach, estimating this steady state or fixed point by extracting the actual
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deterministic dynamics of the wind turbine. Stochastic influences are handled as
noise and separated from this information. For this reason, the dynamical approach
is a generic one and promises more accurate results than the two other presented
methods. Beyond, it provides much more information than only the steady states
of the process, i.e. the power curve, and potentiates e.g. a detailed analysis of the
short-term dynamics of the WECS (see [Gottschall & Peinke 2007]). Admittedly,
the dynamical method is just for this reason of another type than the IEC standard
and cannot replace it that easily. Instead of mean values we estimate fixed points,
which has essential implications on the application of the resulting power curves.



84 3. A phenomenological power performance model

3.7 Appendix B: Data description

The investigations presented in Chapter 3 are mainly based on a set of measured
wind speed and power data that was recorded during a measurement campaign
in a wind park in the mid-western part of Germany. The campaign lasted from
2004 until April 2006. Unless otherwise mentioned we refer to a data set that was
recorded in the months October till December 2005, consisting of 58 complete but
not necessarily successive days of data. The wind park is located near the village
Meerhof, south of Paderborn, and the area is described as the foothills of a low
mountain range. The site itself is largely flat, the distance of the forest area north
of the measurement setup as well as of the neighbouring wind turbines is large
enough not the consider them as factors for flow distortion (see figure 3.34(a)).

A schematic description of the measurement setup is given in figure 3.34(b).
The meteorological mast was located in a distance of D = 180 m to the west
of the considered turbine (φ0 = 87◦). With a rotor diameter of d = 70 m, this
corresponds to a distance of roughly 2.5d between turbine and mast. The disturbed
wind sector, corresponding to the wind directions excluded due to the wake of the
wind turbine on the mast, has been identified as the interval [40.5◦, 133.5◦]. A wind
rose indicating the main flow directions is shown in figure 3.35. The meteorological
mast was equipped with several cup and ultrasonic anemometers, as well as further
meteorological sensors at different heights. Thereof we only use the data of an
ultrasonic anemometer of the type USA-1, manufactured by the company Metek,
that was located at a height of 95 m which is 3 m under the hub height of the
turbine.

The ultrasonic anemometer consists of three ultrasonic transponder pairs that
are mounted around a bar in the center. The middle bar causes a flow distor-
tion that was accounted for by a correction algorithm applied subsequently to the
measurement. The data, consisting of the three velocity components X, Y , Z for
North-South, East-West and the vertical direction, was recorded with a sampling
frequency of 50 Hz that was reduced to 1 Hz and 10 Hz, respectively, for the analysis
by simple averaging. From the two horizontal components X and Y , the horizontal
wind speed u, i.e. the absolute value of the horizontal wind velocity component in
flow direction, and the wind direction φ were derived. A data normalization with
regard to the air density, as required in [IEC 2005a], could not be applied due to a
failure of the air pressure sensor.

The tested wind turbine is a commercial MW-class turbine with a hub height
of 98 m. The power output data were sampled with a frequency of 1 Hz. For the
analysis it was normalized to rated power.
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Figure 3.34: Site layout and location of the meteorological mast. Both figures are aligned
in North-South direction. In (a), the considered turbine is the most-left one, i.e. at the
west borderline of the wind park. (b) is a schematic cut-out of (a). D gives the distance
between WECS and mast, and φ0 the corresponding direction (φ0 = 87◦). Crosses indicate
the considered and the neighbouring turbines.
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Figure 3.35: Distribution of wind directions for the considered site. Direction data ex-
tracted from the two horizontal components of an ultrasonic anemometer, with a sampling
rate of 1 Hz. The scale of the polar plot gives the probability density of the wind directions.
The analyzed data set consists of data from 58 complete but not necessarily successive days
between October and December 2005.
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[Böttcher et al 2003] F. Böttcher, Ch. Renner, H.-P. Waldl, and J. Peinke: On the
statistics of wind gusts. In: Boundary-Layer Meteorology 108, 163–173 (2003).
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Chapter 4

Stochastic modelling of
human postural control

In this chapter, it is shown show by means of a further example of
application how the Langevin approach can be utilized to model the
dynamics of a set of experimental data. The reconstruction of drift and
diffusion coefficients is applied to evaluate balance performance with
respect to an experiment on a balance board. In particular, it is in-
vestigated to what extent supra-postural tasks influence the balance
performance of respective test participants. A modification of the gen-
eral reconstruction procedure is introduced that is particularly adapted
to very short data sets, and it is shown how it can be evaluated if cer-
tain deviations in derived drift and diffusion coefficients are significant
or not by means of an analysis of variances (ANOVA). The first section
of this chapter is given by a publication that summarizes the general
framework for the specific application. In the second section, a more
advanced study is presented. In this second study, the differences be-
tween standing and sitting on the balance board have been investigated
and, at this, it is distinguished between task and time effects on the
respective balance performance.



92 4. Stochastic modelling of human postural control

4.1 Exploring the dynamics of balance data –
movement variability in terms of drift and dif-
fusion 1

We introduce a method to analyze postural control on a balance
board by reconstructing the underlying dynamics in terms of a Langevin
model. Drift and diffusion coefficients are directly estimated from the
data and fitted by a suitable parametrization. The governing parameters
are utilized to evaluate balance performance and the impact of supra-
postural tasks on it. We show that the proposed method of analysis
gives not only self-consistent results but also provides a plausible model
for the reconstruction of balance dynamics.

4.1.1 Introduction

Human movement coordination is essentially characterized by variability. Within
studies on a wide range of experiments, including e.g. the research on gait dy-
namics, isometric force production or coordinated discrete and rhythmic move-
ments, a couple of different measures have been introduced to quantify the
observed variability in movement and evaluate a respective task performance
[Newell & Corcos 1993, Davids et al 2005, Hausdorff 2007, Slifkin & Newell 1999].

The definition of an appropriate measure for a specific context is directly related
to the question regarding the nature of the dynamical process that underlies the
observed variability in human movement. Fluctuations in the variables that are
measured in a respective experiment are in the simplest case due to uncorrelated
noise and captured by summary statistics as mean values or standard deviations of
the particular variables in an adequate way. More often however one can identify a
dynamical process that induces finite correlations. In this case, a dynamical anal-
ysis can provide further information that can be used to characterize the observed
process. Irregular fluctuations may originate from a nonlinear deterministic process
or a random process as for example fractional Brownian motion. Respective meth-
ods for the analysis of human movement data utilizing advanced measures were
presented e.g. by [Stergiou et al 2004] and [Collins & De Luca 1993].

In this work, we focus on an approach that combines both, deterministic and
stochastic features. In particular, we present how the data of a balance experiment,
as an example for human movement control, can be analyzed in the framework of
a Langevin process. For this class of stochastic processes, the interplay between
deterministic and stochastic components is captured in terms of drift and diffusion.
The drift part gives the deterministic behaviour of the considered system and can be
best illustrated by a potential within that the movement takes place. The diffusion
part adds dynamical noise that lets the movement fluctuate in this potential and
that, in contrast to external measurement noise, directly influences the evolution of
the dynamics. In studying turbulence, Friedrich and Peinke introduced a method
how to quantify drift and diffusion for systems that can be described as a Markov
process [Friedrich & Peinke 1997]. The method is based on well-known statistical
concepts and can be applied directly to a measured time series. Over the years, this
procedure has been utilized for the analysis of many different systems in a variety of
disciplines including the analysis of tremor data, financial time series or heart-rate
fluctuations [Friedrich et al 2000, Renner et al 2001, Kuusela 2004], as well as for
the characterization of rhythmic human movement [Van Mourik 2006a]. The differ-
ent kinds of applications can be divided into the two categories of complexity in time

1Submitted to Phys. Lett. A as J. Gottschall, J. Peinke, V. Lippens, and V. Nagel: Ex-
ploring the dynamics of balance data – movement variability in terms of drift and diffusion (2008).
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and complexity in scale. Applications in the field of movement sciences normally
belong to the first class and are described in terms of an autonomous Langevin
equation. Hereby, it is essentially required that the sampled signals corresponds
to a stationary diffusion process. In particular, in [Frank et al 2006] the use of the
Langevin model is motivated for the analysis of human motor control variability
by referring to the existence of different levels of description, a macroscopic and a
microscopic, corresponding to deterministic and stochastic forces as stated in the
synergetics approach (cf. [Haken 2004]).

By means of the experiment referred to in this contribution, we particularly
investigate the performance of dynamical balance in combination with a supra-
postural task – similar studies were already reported in [Stoffregen et al 2000]
and [Lippens 2005a]. Contrary to the prediction of the concept of resources (cf.
[Woollacott & Shumway-Cook 2002], [Fraizer & Mitra 2008]), it has been shown
that the performance of balance does not decrease in the presence of supra-post tasks
but rather increases in some cases. This result supports the hypothesis that postu-
ral control is not executed autonomously but is functionally integrated as a part of a
broader information-movement system [Stoffregen et al 2007, Bootsma 1998]. In a
number of studies, it was observed that the variability of sway is reduced to enhance
perceptual contact to the environment in order to facilitate different supra-postural
tasks (looking, reading resp. detecting [Stoffregen et al 1999, Stoffregen et al 2000,
Stoffregen et al 2007], touching [Holden et al 1987, Riley et al 1999], or pointing
[Balasubramaniam et al 2000]). The study presented in this contribution is directly
attached to these investigations, considering however a specific measurement setup
and a for this application novel method of data analysis.

4.1.2 Experimental setup and data analysis

A. Experimental setup

For the study presented in this contribution, we have considered a balance experi-
ment and show, in particular, how the performance of postural control on a balance
board can be analyzed in terms of drift and diffusion. A conventional balance board
is made up of a hemisphere, the balance disc, and a circular platform on top of it
on which the test participants stand and try to balance. Inside the hemisphere
three gyros and and three accelerometers measure the angular velocities (ωφ, ωθ,
ωψ) and accelerations (aφ, aθ, aψ) of the board. From the velocity and acceleration
data the corresponding values for the angles (φ, θ, ψ) are reconstructed, for details
see [Wagner et al 2003]. To minimize the state space and the needed number of
measured data points, the degrees of freedom of the balance board were reduced
for the present study by a mechanical construction, connecting in fact two balance
discs by a prolate platform to a more rigid structure. Due to this modification, the
movement of the balance board is restricted to only one direction in the horizontal
plane spanned by φ and θ. For the present experiment, we considered the movement
in medial-lateral direction corresponding to the angle φ (see figure 4.1).

The group of test participants consisted of 10 volunteering students (5 females,
5 males; age: 20-25 years). All of them were well experienced on the balance
board.Each subject performed four trials on the balance board, two trials with
supra-postural task and two without. The supra-postural task consisted in searching
in one trial the letter E and for the other the letter H in a text displayed on a
poster. The letters were presented in the same block of a continuous text but
with different frequencies of occurrence (E: 102, H: 25). The participants counted
the respective letters during the trial and reported the number of detected letters
after the measurement was finished. In the trials without supra-postural task, the
participants were asked to focus a marked point at the wall that was at the same
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Figure 4.1: Experimental setup – consisting of the modified balance board (two balance
discs connected by a platform on the top, reducing degrees of freedom to movement in only
one direction), connection to a computer, surrounding handrail (to be used only before
and after the data recording), and text on tripod for searching condition.

position as the poster for the trials with searching. The subjects stood in bipedal
stance on the board, and the sequence of trials was randomly arranged for each
subject. For each trial, data was collected over a duration of 45 sec and with a
sampling rate of f = 100 Hz.

In the following, we firstly present how to model balance dynamics as a
Langevin process and reconstruct its governing coefficients exemplarily for one
data set. After that, we compare the results for the whole group of subjects and
trials and discuss the effect of supra-postural tasks on balance performance.

B. Data analysis

Figure 4.2 shows an exemplary time series for the angle φ that describes the
angular displacement in medial-lateral direction as well as for the corresponding
angular velocity ωφ. While φ(t) represents apparently a non-stationary process
(or possibly the consequences of fluctuations of a longer stationary process, cf.
[Duarte & Zatsiorski 2000]), ωφ(t) fluctuates around an equilibrium point of ap-
proximately zero velocity. Since the statistical approach we want to apply in the
following requires the stationarity of the data, we applied our dynamical analysis
to the data of angular velocity. The temporal variation of the angular velocity
corresponds to a force or torque which is, furthermore, in a mechanical approach
the appropriate quantity to describe the system. To simplify the notation we set
x(t) ≡ ωφ(t).

We analyze the dynamics of x(t) in terms of an autonomous Langevin process
described by the first-order differential equation

ẋ(t) = D(1)(x) +
√
D(2)(x) Γ(t) . (4.1)

The term D(1)(x) is called drift coefficient and reflects the deterministic part of the
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Figure 4.2: Exemplary time series for the (a) angular displacement in medial-lateral
direction and (b) the corresponding angular velocity.

dynamics. Its stochastic counterpart is given by the Langevin force Γ(t), represent-
ing Gaussian white noise with 〈Γ(t)〉 = 0 and 〈Γ(t1)Γ(t2)〉 = 2δ(t1 − t2) (following
the convention in [Risken 1989]), and the square root of the diffusion coefficient
D(2)(x), fixing the amplitude of the stochastic fluctuations. Here, we apply Itô’s
interpretation of stochastic integrals. D(1)(x) and D(2)(x) are explicitly not time-
dependent.

In a first-order approximation for finite sampling rates, drift and diffusion coef-
ficients are derived according to

M (n)(x, τ) = n!τD(n)(x) +O(τ2) (4.2)

with the conditional moments

M (n)(x, τ) := 〈[x(t+ τ)− x(t)]n〉
∣∣
x(t)=x

, (4.3)

(n = 1, 2). The time increment τ is given in units of the inverse sampling rate f−1.
Note that the approximation D(n)(x) ≈ M (n)(x, τ)/(n!τ), as deduced from (4.2),
is only exact for the limit τ → 0. With increasing values of τ as well as in the
presence of additional external noise, the estimated drift and diffusion coefficients
deviate systematically from the intrinsic functions, and further correction terms
must be taken into account for an exact reconstruction (cf. [Friedrich et al 2001,
Böttcher et al 2006, Gottschall & Peinke 2008]). These deviations are not further
considered for the present analysis to simplify matters. It is assumed that their
impact on the final results is negligible for this application. Though, a detailed
analysis is beyond the scope of the present study.

In practice, the drift and diffusion coefficient are usually estimated by introduc-
ing a binning for the variable x, i.e. determining a discretization (x0, x1, ..., xi, ...,
xN ) of N equally sized intervals (I1, ..., Ii, ..., IN ) and deriving the mean values

D(n)[i] =
〈
dn(t)

∣∣x(t) ∈ Ii
〉

(4.4)



96 4. Stochastic modelling of human postural control

−15 −10 −5 0 5 10 15

−
40

−
20

0
20

x [deg]
[d

eg
/s

]
D

((1
)) ((x

))

(a)

●
●

●

●

●
●

●

−15 −10 −5 0 5 10 15

0
50

10
0

15
0

20
0

●

●

● ● ●

●

●

x [deg]

D
((2

)) ((x
))

[  
   

   
de

g2
   

   
   

   
   

   
   

   
   

 /s
]

(b)

Figure 4.3: Reconstruction of drift and diffusion coefficient with the use of a binning
(dashed lines and triangles for N = 4, dotted lines and dots for N = 7), and parametriza-
tions applying a least-squares fit – (a) linear fit for D(1)(x) (N = 4: a0 = 0.80(±.17),
a1 = −1.84(±.01); N = 7: a0 = −2.1(±2.0), a1 = −1.36(±.17)), and (b) second-order
polynomial for D(2)(x) (N = 4: b0 = 64.2(±.2), b1 = 0.35(±.01), b2 = 0.25(±.01)); N = 7:
b0 = 59.5(±1.1), b1 = 0.27(±.04), b2 = 0.34(±.01)).

with
dn(t) := [x(t+ τ)− x(t)]n/(n!τ). (4.5)

In detail, the boundaries of the bins are found by computing the minimum and the
maximum of the sampled data and dividing the range spanned by these two values
through the preliminarily defined number of bins. Additionally, a minimum number
of data points per bin is specified which may decrease the actual number of bins.
Figures 4.3(a) and (b) show the results for the data displayed in figure 4.2, applying
two different binnings with N = 4 and N = 7 bins, respectively. The values for
the drift coefficient were fitted by the linear function y = a0 + a1x, the values for
the diffusion coefficient by the second-order polynomial y = b0 + b1x+ b2x

2, using
in each case the method of least squares. The error bars shown in the two figures
are defined as standard errors for the values D(1)[i] and D(2)[i] in each bin. The
uncertainties for the fitted parametrizations are given in the caption.

At first sight, the results for the two different binnings seem to deviate strongly
from each other. However, since both results have a large uncertainty, they are
actually to a large extent consistent. Nevertheless, the plots illustrate that the
introduction of a binning for data sets that consist only of a small number of data
points involves certain difficulties. Due to the small total number of data points,
we have to choose relatively large bin widths in order to keep a specified minimal
number of data points per bin, which increases the uncertainty for the single points
D(n)[i].

An alternative procedure, avoiding primarily the errors induced by the binning,
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is to apply a least-squares fit directly to the values dn(t) versus x(t). Respective
results are shown in figure 4.4.
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Figure 4.4: Direct reconstruction of drift and diffusion coefficient without binning, and
parametrizations applying a least-squares fit – (a) linear fit for D(1)(x) (a0 = 0.49(±1.79),
a1 = −1.82(±.28)), and (b) second-order polynomial for D(2)(x) (b0 = 60.9(±2.3), b1 =
−0.07(±.32), b2 = 0.29(±.03).

C. Self-consistency test

To check the quality of the results of the two applied procedures, we performed
a self-consistency test. Therefore we estimated the empirical probability density
function (pdf) directly from the data and compared it with a theoretical pdf that
is derived on the basis of the reconstructed D(1)(x) and D(2)(x).

Following [Risken 1989], the stationary pdf of a Langevin process defined by
(4.1) is given by

pstat(x) =
N

D(2)(x)
exp

(∫ x

dx̃
D(1)(x̃)
D(2)(x̃)

)
(4.6)

whereN is a normalization constant. The results for the exemplary data set of figure
4.2 and the corresponding estimates for drift and diffusion coefficient in figures 4.3
and 4.4 are shown in figure 4.5. The theoretical pdfs are based on the obtained
parametrizations, i.e. the fitted functions for drift and diffusion, and (4.6). The
different results for the method of reconstruction with binning, dependent on how
many bins were used, recur in two different results for the derived pdf (dashed line
for N=4, dotted line for N=7). A third theoretical pdf is given by the results of the
direct reconstruction procedure. The empirical pdf is determined by the histogram
of the measured data (given by symbols in a semi-logarithmic plot). Note that the
discretization applied at this has a much finer resolution than the binning used for
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the estimation of drift and diffusion coefficient – the outer bins include only a few
data points. (The value of p(x)=4 · 10−4, which is the lowest probability displayed,
corresponds to only two data points.)
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Figure 4.5: Empirical pdf (histogram given by dots) and corresponding functions recon-
structed according to (4.6) applying the methods with (dashed and dotted lines for N=4
and N=7 bins, respectively) and without binning (solid line).

The goodness of fit, i.e. the agreement between the empirical and the recon-
structed pdfs, p(x) and pref , respectively, depends strongly on the chosen binning.
Deriving the respective Chi-square distances

dC(p(x), pref(x)) :=

∫ +∞
−∞ dx [p(x)− pref(x)]2∫ +∞

−∞ dx pref(x)
, (4.7)

replacing the integrals by finite summations for a finite number of points, we find
the values 0.034 and 0.131 (for N=4 and N=7, respectively) for the method with
binning. Applying the direct method, we obtain a Chi-square distance of 0.031
between the reconstructed pdf and the empirical pdf. Evaluating a respective Chi-
square test, we find that all three reconstructed pdfs disagree with the empirical
one. This result is not surprising since the empirical pdf is based on only a small
data basis and is, furthermore, essentially affected by the used discretization – the
reconstructed pdfs are however smoothed by means of the parametrization. The
Chi-square measure is hence only a weak criterion. Nonetheless, the found values
may argue for the direct method in comparison to the method with binning. We
obtained similar outcomes also for the other data sets, and could confirm them with
the analysis of typical numerical data. A simple explanation for this result is that
we consider for the estimation of drift and diffusion with binning not all of the
measured data points but include only the points in those bins containing a certain
minimum of data. Removing some data induces a kind of asymmetry in comparison
to the determined empirical pdf that contains all the data points. The advantage
of the direct method, in contrast, is that the complete data set is considered and
no data limitations must be determined.

Consequently, we can conclude that a direct method of reconstruction without
binning should be especially for short data sets the method of choice. It is however
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necessary to mention that the direct method is only applicable if drift and diffusion
coefficient are in a simple relation to the conditional moments as given in (4.2). For
lower sampling rates or in the presence of external measurement noise the relation
is more complex (cf. [Gottschall & Peinke 2008]) and a binning is necessary for the
analysis. Furthermore, the direct method requires the previous knowledge of the
functional forms of D(1)(x) and D(2)(x), so that it is recommendable to perform a
pre-analysis using the method with binning.

4.1.3 Results

A. Performance-of-balance measures

To examine the influence of supra-postural tasks on postural control, and in detail
of visual searching on the performance of postural control on the balance board, we
analyzed the data for each subject and each trial recorded for the study described
above in the following way. The first step has been to define an appropriate measure
expressing the degree of movement variability. In respect of the analysis in terms
of drift and diffusion, presented in the preceding section, we utilized the single re-
constructed parameters of D(1)(x) and D(2)(x) as a set of independent performance
measures. In doing so, we presume that a change in movement variability is given
by a quantitative change in at least one of the listed parameters. (In the following,
we refer to this approach as method B.) This we compare with the approach in
[Lippens 2005b], where the degree of variability and the corresponding performance
of balance is measured in terms of the root mean square (RMS) values for all three
degrees of freedom as a sample statistic for the single data sets. As a slight modi-
fication, we consider in this paper the standard deviations (SD) for the respective
time series of angular velocity in medial-lateral direction (method A).

Both approaches are linked according to (4.6). The reconstructed drift and
diffusion coefficients can be utilized to split up the standard deviation into a de-
terministic and a stochastic part. Moreover, they give not only the width of the
pdf but its actual shape, and thus contain considerably more information than the
single values for SD.

B. Revealing significant effects by application of ANOVA

Having once defined the performance measure, we could apply an analysis of vari-
ances (ANOVA) with the performance measure as dependent variable to investigate
possible systematic task-related differences in the degree of variability for the whole
group of test participants. We performed a one-way ANOVA on the factor task
with k = 2 and k = 4 factor levels, respectively. (For a short outline of this kind of
statistical test see the Appendix.) For the first part of the analysis, we distinguished
solely between the trials with and the trials without supra-postural task, resulting
in two treatments or levels (searching vs. no searching). Originally, the study was
designed to be composed of four treatments, corresponding to the four trials for
each participant (first and second trial without task, searching the letters E and
H). Since the two trials without supra-postural task differ only with respect to their
order, we however have intended to investigate task effects but not the impact of
time or learning with this first approach, an analysis with four levels has to be
considered with caution. We present the results of both ANOVA designs here. For
the respective discussion, we have defined significance on a level of p < 0.05

Evaluating the values for SD as dependent variable (method A), we found in
accordance with [Stoffregen et al 2007] a significant task effect, expressed by a de-
creased standard deviation of angular velocity in medial-lateral direction during
searching that corresponds to an increase of balance performance, for both the
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Table 4.1: Overview of main effects revealed by an one-way ANOVA on the factor task
(k = 2 and k = 4 levels, resp.) for different (partial) measures. Significant effects are
indicated by * (p < 0.05).

Variable F(1, 38) p< F(3, 36) p<
method A:
standard deviation (SD) 15.778 0.0003 * 5.226 0.004 *
method B:
a0 (const. part of drift coefficient) 0.584 0.449 0.201 0.895
a1(linear part of drift coeff.) 0.841 0.373 0.349 0.790
b0 (const. part of diffusion coeff.) 10.340 0.003 * 4.005 0.015 *
b1 (linear part of diffusion coeff.) 2.514 0.121 1.176 0.332
b2 (quadratic part of diffusion coeff.) 0.845 0.364 2.199 0.105

ANOVA with two and with four treatments (k = 2: F(1, 38) = 15.778, p < 0.0003;
k = 4: F(3, 36) = 5.226, p < 0.004). To classify the task effect with respect to the
ANOVA with four factors further, we applied a Tukey HSD test that compares all
possible pairs of means for the different factor levels analyzed for the ANOVA and
identifies on the basis of a studentized range distribution the significant differences.
Here, the decomposition of the factor task shows a significant increase of balance
performance for searching conditions compared with the first no-task condition (E:
p < 0.018, H: p < 0.019). Compared to the second no-task condition the effect is
not significant (E: p < 0.094, H: p < 0.099).

We performed the same analysis for the single parameters of D(1)(x) and D(2)(x)
applying a linear and second-order parametrization, respectively, as given above
(method B). For both applied designs, the ANOVA solely reveals a main effect of
task for the parameter b0, i.e. the constant part of the diffusion coefficient (k = 2:
F(1, 38) = 10.340, p < 0.0027 and k = 4: F(3, 36) = 4.005, p < 0.015; cf. figure
4.6). All other parameters show no significant effects – see table 4.1. Applying
a Tukey HSD test, a decomposition of the factor task for the design with four
factors again shows a significant increase in performance of balance for the searching
conditions compared to the first no-task condition (E: p < 0.030, H: p < 0.028) but
no significant effect in comparison to the second no-task condition (E: p < 0.398,
H: p < 0.378).

Beyond, an ANOVA with the factor trial (1st–4th trial) gives no significant
effects for all used performance measures, so that we can rule out the possibility of
a general impact of the arrangement of the trials.

Hence, the analysis of drift and diffusion confirms the former results based on
the comparison of standard deviations and provides further more detailed informa-
tion about the process dynamics beyond it. A decrease in the standard deviation
of the angular velocity for balancing with supra-postural task in comparison to bal-
ancing without additional task is thus primarily traced back to a difference in the
stochastic part of the dynamics but not in the deterministic part. That is, in the
presence of a supra-postural task, balance is performed with less dynamical noise
in the corresponding Langevin process. In principle, a reduced variability, given
by a smaller value for the standard deviation of the angular velocity, could also be
achieved by an increased slope of D(1)(x), a larger absolute value for a0, i.e. a faster
deterministic reaction. This is however not observed here.
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Figure 4.6: Performance of balance with and without supra-postural tasks in terms of
the constant part of the diffusion coefficient. Shown are the mean values of the measure
for each factor level (ANOVA with k = 2 and k = 4 treatments, resp.), vertical bars
indicate a 0.95-confidence interval. The performed ANOVAs reveal significant effects with
F(1, 38) = 10.340, p < 0.003 and F (3, 36) = 4.005, p < .015, resp.

4.1.4 Conclusions

To summarize, we have introduced a dynamical method for the analysis of balance
data based on the reconstruction of an underlying Langevin process. For this pur-
pose, we have applied a well established procedure but particularly adapted it to
very short data sets. Our analysis confirms former results with regard to the impact
of supra-postural tasks on the balance performance, but provides further insights
into the process dynamics separating deterministic and stochastic parts. In a fur-
ther study we are going to show how this separation can be utilized to differentiate
between task effects and effects of training in repeated balance experiments. For the
present data, we showed the self-consistency of our results, and approved the initial
assumption that the process can be described by a Langevin process. To estimate
drift and diffusion coefficients from the measured data, we applied a first-order ap-
proximation for the conditional moments. Systematic deviations that may arise due
to too low sampling rates or in the presence of external measurement noise and that
would possibly require the consideration of higher-order terms were not discussed
in detail. It is assumed that respective systematic errors do not influence the final
results of the experiment, i.e. the outcome of the performed ANOVA, since they
affect the single trials respectively in the same manner. Altogether, our findings
suggest to apply the described approach to analyze human motor control variability
and reconstruct human movement coordination in terms of drift and diffusion.
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4.2 Distinguishing between task and time effects
– a study on rowers standing and sitting on a
balance board 2

4.2.1 Outline of the study

Objective of the study, that is discussed in this section, has been to evaluate the
balance performance of rowers in a standing and a sitting condition, and particularly
analyze the influence of supra-postural tasks as well as certain time effects.

The group of test participants has consisted of in total 13 junior rowers of a re-
gional rowing club in Hamburg (mean age: 13.14 years), though not all participants
attended each measurement. The study was carried out during winter and spring
2008 and has been divided into five measurements (tI−tV) under varying conditions
with N participants in each case – two pre-test measurements (tI: standing 1, N=6;
tII: sitting 1, N=7) during the winter training, two post-test measurements after a
period of approximately two months (tIII: sitting 2, N=6; tIV: standing 2, N=5)
and lastly a retention measurement after again two months (tV: sitting 3, N=7).

As measurement instrument, the modified version of the balance board was used
(see 4.1.2). The subjects either stood in bipedal stance (cf. figure 4.1) or sat, with
their feet on an additional balance disc, on the board – the measurement setup for
the sitting condition is illustrated in figure 4.7.

Figure 4.7: Experimental setup for sitting condition – consisting of balance board with
connection to a computer, surrounding handrail, and poster-text on tripod for searching
condition.

For each measurement, the individual participants underwent four single but
successive trials on the balance board – each with a duration of 45 sec. Thereof,
they performed two trials with a supra-postural task (searching the letters E or H)
and the two other without – just as described in 4.1.2. The sequence of trials was
systematically permuted across the participants, resulting in a random order for the
individual subject. The data of the balance board was recorded with a sampling
rate of f = 100 Hz.

2The results described in this section were presented as V. Lippens, V. Nagel, J. Gottschall,
and J. Peinke: Performance of balance – General motor ability or specific adaption of strategies?
at the WCPAS VIII conference (2008), and published under the same title in World Congress of
performance Analysis of Sport VIII. Book of Proceedings eds A. Hökelmann and M. Brummund;
Otto-von-Guericke University, Magdeburg, 354–359.



4.2 Distinguishing between task and time effects 103

For the standing as well as for the sitting conditions, the velocity data of the
movement in medial-lateral direction was analyzed. We accomplished a data re-
duction by deriving the standard deviations (SD) of the single data sets, i.e. for
each trial of each participant and measurement, as well as the set of parameters
(a0, a1, b0, b1, b2) applying the Langevin approach and a respective parametrization
of the drift and diffusion coefficients, as it is exemplified in the last preceding section.
The resulting six parameters were one after the other investigated by means of an
ANOVA for repeated measures assuming different models. The explicit proceeding
is described in the following section.

4.2.2 Results and discussion

The performance of balance of the rowers was analyzed in three different models
– a trial model to investigate the impact of the order of trials (1st–4th trial for
both groups of measurements, under standing and sitting conditions, respectively),
a task model to evaluate the impact of the different kinds of supra-postural tasks
(trial without task 1 and 2, searching the letter E, searching the letter H – likewise
for both groups of measurements), and a time model to detect possible systematic
differences between the single measurements (standing 1-2 and sitting 1-3, without
further specifying the factor task or trial). For all three models, we performed an
ANOVA with repeated measurements (cf. Appendix) for each single parameter – SD,
and a0, a1, b0, b1, b2 for the Langevin approach – as dependent variable, respectively.
Thereby, significance is again defined on a level of p < 0.05.

Neither for the sitting nor for the standing condition, we could find an effect
of trial. I.e. the balance performance of a particular trial does not depend on the
position within the series of trials at that it is performed. An effect of task could
be found for the standing conditions (tI, tIV), and that for several parameters (for
SD a significant effect with F(3, 27)= 5.446, p < 0.005, and for b0 a weak tendency
given by F(3, 27)= 2.512, p < 0.080), but not for the sitting conditions of the pre-
and post-test measurements (tII, tIII). A task effect for a sitting condition could
however be observed for the retention measurement (tV) – again for the parameters
SD and b0 (F(3, 18)= 6.181, p < 0.005 and F(3, 18)= 5.251, p < 0.020, respectively).
Significant time effects, in contrast, were found only for the sitting conditions (tII,
tIII, tV) but not for the standing conditions (tI, tIV). For the former case, highly
significant effects were detected for the parameters SD (F(2, 17)= 13.824, p <
0.000), b0 (F(2, 17)=7.977, p < 0.004), and in addition for a0 (F(2, 17)=59.059, p
< 0.000).

The results for the measurements under standing conditions are consistent with
former studies, and especially with the conclusions of 4.1, confirming the idea of
a functional integration of postural control (see e.g. [Stoffregen et al 2007]). The
outcome of the Langevin approach confirms the results obtained on the basis of the
standard deviation of the angular velocity data. For the most cases, a decrease in
SD is directly related to a smaller value for b0, i.e. the constant part of the diffusion
coefficient in the Langevin model. Under the sitting conditions, we conclude, the
rowers have to obtain a certain level of performance before the supra-postural tasks
facilitate the motor action (cf. [Bloem et al 2006]). This may explain why a task
effect is not observed until the retention measurement. The performance of balance
in the sitting condition is significantly increased during the line of the pre-test,
the post-test and the retention measurement – for the standing conditions this
development is not observed. One may conclude that, comparing standing and
sitting on the balance board, the balance control of rowers is caused by different
adaptions of strategies. As last point, we want to comment the observed significant
time effect for the parameter a0 in the sitting condition. This effect can be explained
with regard to the measurement setup. Repeating the experiment at another time,
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the test participants do usually not find exactly the same position they had for the
first measurement on the balance board. Thus, the movement fluctuates around a
slightly different, possibly less stable point. Accordingly, also the angular velocity
may fluctuate around different fixed points that are not necessarily zero, resulting
in an asymmetric and unstable or eventually non-stationary movement. Since the
effect is observed for the whole group and not only for single participants, it can
clearly be related to the setup. We conclude that a main effect for a0 serves as a
kind of indicator for a modified setup and is helpful for the interpretation of time
effects.
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4.3 Appendix: One-way ANOVA

For those readers who are not familiar to the application of an analysis of variance
(ANOVA) we give here a short outline of the respective procedure as it is applied in
sections 4.1 and 4.2. We restrict our considerations to a one-way ANOVA, i.e. we
consider one independent variable or factor affecting one dependent variable. For
more details and a comprehensive overview we e.g. refer to [Chambers et al 1992]).

For our applications, the dependent variable is the type of trial and the depen-
dent variable is the respective performance measure. The values of the dependent
variable are grouped with respect to different factor levels. The different levels are
for our application either the specifications with or without supra-postural task (in
detail, searching the letter E or H and first or second trial without task) or the
number with respect to the order of trials (1–4th trial).

According to this grouping, one calculates the so-called variance of the group
means

Var1 :=
k∑

j=1

nj(X̄j − X̄)2/(k− 1) (4.8)

as well as the mean of the within-group variances

Var2 :=
k∑

j=1

(nj − 1)σ2
j /(N− k), (4.9)

where k is the number of groups or factor levels, respectively, nj the number of
trials for each factor level and N the total number of trials. X̄j and σ2

j denote the
mean value and the variance of the dependent variable within each group j, and X̄
is the mean value of all N trials. The quotient

F := Var1/Var2 (4.10)

gives a test statistic that is evaluated by means of an F-test. That is, to test the
null hypothesis that the mean values for the dependent variable of the different
groups are equal, the value F is related to a Fisher’s F(k − 1, n − k)-distribution
where the specifications in the parentheses give the degrees of freedom. The result
is the probability of error with that the null hypothesis can be declined. For the
discussion of the obtained results, significance is defined on a certain level as e.g.
p < 0.05 – i.e. p-values smaller than this bound serve as indication for a significant
difference in the dependent variable grouped according to the factor levels.

For the application in section 4.2, we performed instead of the standard one-way
ANOVA, outlined above, a so-called one-way ANOVA for repeated measures. At
this, the term repeated measures means evaluating multiple measures per subject,
which refers for our application to the different measurements performed at different
times. A repeated measures design increases the sensitivity of the test since the
test subjects serve as their own controls, eliminating the problem of across-subject
variations.
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Chapter 5

Summary

The basic intention of this thesis has been to show the applicability of a particular
method of stochastic modelling for complex systems, based on the reconstruction of
effective Langevin equations, and to extend and improve the respective procedure of
data analysis with respect to specific examples of application. Thereby, the method
has been particularly extended to Langevin-like processes that are not determined
by Langevin equations in a strict sense but for that a reconstructing based on the
Langevin approach nevertheless provides useful information.

Subsequent to an overview about previous fields of application that were pub-
lished during the last years, two specific novel applications were described in more
detail in this thesis – the modelling of a wind turbine’s power performance in Chap-
ter 3, and the investigation of human postural control in Chapter 4. With respect to
the large variety of very different applications, represented also by these two exam-
ples, it suggests itself to ask questions like how universal the presented and applied
method actually is, how good and significant the results for a specific application,
and eventually which benefit the method provides in comparison to other, possibly
more conventional methods. To give in some respect an answer to these questions, I
have elaborated on different aspects that may help to evaluate a specific application
with respect to the theoretical Langevin model that is assumed.

In Chapter 2, the influence of low sampling rates and the presence of additional
external measurement noise on the results of the reconstruction procedure has been
analyzed in detail. These two kinds of disturbances have been chosen because it is
assumed that they are the most prominent ones for the application of the recon-
struction procedure to experimental data and that they possibly have been ignored
for several applications so far having led to inaccurate results consequently – which
has already been annotated and discussed in former publications (cf. Chapter 2).
In particular, it has been pointed out that a reconstruction for a process that is
exposed to at least one of the two discussed disturbances may indicate a multiplica-
tive noise term although the intrinsic process is defined by additive noise. This may
lead to a significant misinterpretation of the stochastic part of the observed and
modelled dynamics. Based on a detailed analysis of the impact of finite-resolution
and measurement-noise effects on the reconstruction of the underlying stochastic
processes for numerical data, the relevance of studying the behaviour of the con-
ditional moments of the data as function of a respective time increment has been
underlined. Corresponding deviations from a linear relation as well as non-zero
offsets may serve as significant indicators for a specific kind of disturbance. These
indicators may give a hint regarding the accuracy of the reconstructed drift and
diffusion functions.

In the same context, also the robustness of reconstructed fixed points as char-
acteristic steady states for the system under consideration has been studied. The
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estimation of the fixed points of a dynamical system corresponds to a simple and
especially, as exemplified in Chapter 3, very flexible approach to characterize a
complex system. The above-mentioned disturbances influence the results for the
fixed points much less than the overall behaviour of the respective drift and diffu-
sion functions but their impact does not totally vanish. As a qualitative indicator,
the asymmetries of the studied process were determined, with respect to those the
accordant inaccuracy of the reconstructed fixed points may be evaluated.

In Chapter 3, I illustrated with the example of the reconstruction of a wind
turbine’s power performance how the concept of stochastic modelling may be inter-
preted as a procedure of an effective modelling. The interplay of the wind turbine
with the turbulent wind fluctuations, where the latter are moreover measured in a
certain distance to the turbine, corresponds to a typical complex system and mo-
tivates in this way the usage of a stochastic approach. The proposed stochastic
relaxation model, given by a one-dimensional Langevin equation for the power out-
put with respect to each single interval of fixed wind speed, describes the transfer of
turbulence from one variable to the other. This was, in particular, illustrated by a
detailed characterization of turbulent structures in measured wind speed and power
output time series. With regard to the modelling procedure, it has been pointed
out that the Langevin model describes the analyzed power performance dynamics
only in a first approximation. The proposed set of Langevin equations is used as a
practical tool to characterize the considered system but it is obvious from the anal-
ysis that it is not sufficient to reconstruct the actual process dynamics. At this, in
particular, the problem of non-stationarity is overcome by a strongly simplified ap-
proach. As another aspect, the Langevin modelling as a tool with a relative meaning
but without a total absolute significance involves certain definitions that primarily
facilitate a practical application but that also incorporate a kind of arbitrariness.

In Chapter 4, dealing with the modelling of human postural control, it has been
focused with the analysis of very short data sets on a further aspect. The results
of the reconstruction procedure for the single data sets, i.e. the single trials in the
experiment on the balance board, come along with a quite large uncertainty due to
the small amount of data. To facilitate a reliable evaluation, the individual results
are combined to different groups that are analyzed by means of an analysis of
variances (ANOVA). Therewith, a framework for the determination of significance
is defined that primarily forms a basis for utilizing and interpreting the results of
the reconstruction. This procedure is generally recommended for applications that
involve only short time series of data.

With respect to the methodology, all the presented investigations are based on,
the aspects that have been discussed in this thesis can be summarized as follows.
It has been distinguished between the intrinsic dynamics, defined by a Langevin
or Langevin-like process, and the observed dynamics that may additionally include
external noise superimposed to the intrinsic dynamics. The respective data that is
sampled as a corresponding discrete time series is basically characterized by a finite
sampling rate and a finite amount of data – restrictions that also may be interpreted
as certain disturbances. An appropriate evaluation of the applicability of the pre-
sented Langevin approach thus consists in investigating how the intrinsic process
dynamics is affected by the process of observation and data sampling, respectively.

A last remark refers to the aspect of variability with that the considerations
in the introduction in Chapter 1 were opened. It has been stated that variability
is measured by means of fluctuations and may be analyzed in terms of dynamics.
A separation into deterministic and stochastic dynamics may correspond to a dis-
crimination between external forces, acting as noise on the studied system, and the
intrinsic response to them. This is in line with the characterization of a stochastic
process in terms of a slowly and a fast varying part. For the first example of appli-
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cation, i.e. the power performance modelling for a wind turbine in Chapter 3, these
external forces are predominantly the wind fluctuations the turbine is exposed to.
Within the scope of the stochastic modelling, I have primarily not been interested
in a characterization of these fluctuations but rather how they are transferred to
the power output of the wind turbine. Accordingly, I have concentrated on the
reconstruction of the drift dynamics reflecting the internal behaviour of the stud-
ied system. This has been different for the modelling of the balance performance in
Chapter 4. The used balance board together with the test subject on top of it forms
a complex system that cannot be described in all details but is instead modelled on
the whole, and the stochastic short-term fluctuations arise within the system itself.
To evaluate the total balance performance, I have considered the estimated values
for the drift as well as for the diffusion coefficient. The Langevin approach may
accordingly give for very different systems a plausible framework. However, the
significance of the obtained drift and diffusion coefficients, i.e. the reliability of the
respective reconstructed values, has to be evaluated for each application separately.
In this thesis, I have proposed several procedures for this kind of evaluation that
may serve as very useful tools for future applications as well as for the revision of
already investigated systems.
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