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Extracting model equations from experimental data
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Abstract

This letter wants to present a general data-driven method for formulating suitable model equations for nonlinear complex
systems. The method is validated in a quantitative way by its application to experimentally found data of a chaotic electric
circuit. Furthermore, the results of an analysis of tremor data from patients suffering from Parkinson’s disease, from
essential tremor, and from normal subjects with physiological tremor are presented, discussed and compared. They allow a
distinction between the different forms of tremor. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.10.Gg; 05.45.-a; 05.40.Ca

1. Introduction

A basic aim of scientific research is to set up
reasonable models for considered systems. A suitable
model should reproduce the observed quantities and
help to gain a deeper understanding of the system.
Usually, collected data and known properties of the
system, as symmetry relations for example, serve as
a basis for the modelling. In contrast to this a
general data-driÕen way for formulating suitable
model equations for nonlinear complex systems is
presented in the following.
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An important and wide class of dynamic systems
can be described by the following differential equa-
tion

d
X t s g X t ,tŽ . Ž .Ž .

^ ` _d t
deterministic part

q h X t ,t G t , 1Ž . Ž . Ž .Ž .
^ ` _

stochastic part

w x Ž .the Langevin equation 1,2 . X t denotes the time
dependent d-dimensional stochastic vector which
characterises the system completely. The time

Ž .derivative of X t can be expressed as sum of a
deterministic part g and a stochastic part hPG ,
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Ž .where G t stands for terms of d-correlated Gauss-
ian white noise and where the d=d-matrix h fixes
the dynamic influence of the noise on the system.
For the functionals g and h no further assumptions
have to be made; g can be nonlinear, and therefore
also deterministic chaos can be formulated by a

Ž .Langevin Eq. 1 . The investigation of complex sys-
tems has shown the necessity to find a description of
a system by Langevin equations directly from mea-

w xsured data sets 3 .
Ž .For this wide class of dynamic systems 1 a

general method for finding the deterministic and
stochastic laws solely by data analysis will be pre-
sented in this letter. If this only condition, the de-
scribability of the system’s dynamics by an evolution

Ž .equation like 1 , is given, no further assumptions or
pre-knowledge have to be included in the following
analysis. Deterministic and noisy parts of the dynam-
ics can be separated and quantified, and model equa-
tions for the dynamics can be set up by the data-
driven method.

2. Numerical method

Ž .The considered class of dynamic systems 1 is
characterised by the missing of memory effects, i.e.
for the time development of the system we need to

Ž .know only the state of one vector X t at a given
time t and not its evolution in the past. A system

w xwith this quality is called a Markovian system 4 .
ŽThe conditional probability density p x ,tqtNnq1

.x ,t; x ,tyt ; . . . describes the probability ofn ny1

states x of the system’s variable X at time tqtnq1

under the condition that the system is in state x atn

time t, has been in state x at time tyt and sony1

on. The Markovian property of a system can be
tested by comparing the multiple conditional proba-
bility densities with the one-step conditional proba-

Ž .bility densities p x ,tqtNx ,t . If both expres-nq1 n

sions agree the time development of the probability
density depends only on the present state and not on
its evolution in the past.

The assumed qualities of the driving noise terms
G as being Gaussian white noise functions can be
validated, as well, by looking at the conditional
probability density distributions.

The central ideas of the presented algorithm will
be explained in the following: First, stationary dy-
namics shall be assumed, i.e. the deterministic and
stochastic parts g and h are not explicitly time
dependent1. Every time t , the system’s trajectoryi

meets an arbitrary but fixed point x in state space,
the localisation of the trajectory at time t qt isi

Ž .determined by the deterministic function g x , which
is constant for fixed x, and by the stochastic func-

Ž . Ž .tion h x G t with constant h for fixed x andi
Ž .Gaussian distributed white noise G t . With this

background in mind, the following relationships
which have been proved in a strict mathematical way
w x5,6 using Ito’s definitions for stochastic integralsˆ
w x7 , become understandable:

1
² : <g x s lim X tqt yx 2Ž . Ž . Ž .X Ž t .sx

tt™0

1
T ²h x Ph x s lim X tqt yxŽ . Ž . Ž .Ž .

tt™0

=
T: <X tqt yx 3Ž . Ž .Ž . X Ž t .sx

Under the condition that the system’s trajectory meets
Ž .the point x at time t, i.e. X t sx, the deterministic

part g of the dynamics can be evaluated for small t

by the difference of the system’s state at time tqt

and the state at time t, averaged over an ensemble,
or in the regarded stationary case, averaged over all

Ž .ts t of the whole time series with X t sx. Thei i

limit t™0 can be reached by extrapolation. In a
similar way, the stochastic influences can be deter-

w xmined, regarding quadratic terms in the averages 8 .
For every point x in state space, that is visited
statistically often by the trajectory, deterministic and
stochastic parts of the dynamics can be estimated
numerically. A schematic illustration of this proce-
dure is shown in Fig. 1.

As final step, analytic functions can be fitted to
Ž . Ž .the numerically determined values of g x and h x

1 Non-stationary dynamic systems, i.e. with functionals g and
h being explicitly time dependent, can be investigated by a
moving window technique. An analysis window is drawn along
the whole time series in overlapping steps. In each window, the
system’s dynamics is assumed to be stationary. When interpreting
the results, the quality of the algorithm of calculating weighted
averages of the real functionals has to be taken in mind.
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Fig. 1. Schematic illustration of the presented algorithm for
analysing noisy data sets and calculating the deterministic and
stochastic parts of the underlying dynamics. In the upper part of

Ž .the figure a trajectory of a chaotic oscillator Shinriki with
dynamical noise is shown. From the trajectory all parts are
selected which run exactly or within some limits at any time ti

Ž .through a certain point x in state space, i.e. X t s xq Dx. Thei
Ž .distribution of the values x taken at the next step X t qt of˜ i

these trajectory parts is given by a Gaussian function with mean
'Ž . Ž .xq g x t and standard deviation h x t , where g and h are

Ž . Ž .defined by Eq. 1 . g x is the mean velocity of the trajectory at
Ž .point x, h x represents the fluctuations of the velocity at this

Ž .point. The conditional probability density p x,tqt N x,t can be˜
evaluated by this way.

in order to formulate model equations for the investi-
gated system.

3. Analysis of electronic data

Next, the application of the method to data sets
from two experimental systems will be presented. As
first example, a chaotic electric circuit has been
chosen. Its dynamics is formed by a damped oscilla-
tor with nonlinear energy support and additional
dynamic noise terms. In this case, well defined elec-
tric quantities are measured for which the dynamic
equations are known. The measured time series are
analysed according to the numerical algorithm de-

scribed above. Afterwards, the numerically deter-
mined results and the expected results according to
the system’s evolution equations are compared.

The electric circuit is shown as schematic illustra-
tion in Fig. 2. Its dynamic equations are given by the
following evolution equations, where the determinis-

w xtic part is known as Shinriki oscillator 9 :
1 1 f X yXŽ .1 2

Ẋ s y y X y1 1ž /R C R C CNIC 1 1 1 1

1
q G tŽ .

R CNIC 1

sg X , X qh G t 4Ž . Ž . Ž .1 1 2 1

f X yX 1Ž .1 2
Ẋ s y X2 3C R C2 3 2

sg X , X , X 5Ž . Ž .2 1 2 3

R3
Ẋ sy X yXŽ .3 2 3L

sg X , X . 6Ž . Ž .3 2 3

X , X and X denote voltage terms, R are values1 2 3 i

of resistors, L and C stand for inductivity andi i
Ž .capacity values. The function f X yX denotes1 2

the characteristic of the nonlinear element. The quan-
tities X , characterising the stochastic variable of thei

Shinriki oscillator with dynamical noise, were mea-
sured by means of a 12 bit ArD converter. Our
analysis is based on the measurement of 100.000
data points, the affiliated trajectory is shown in the
upper part of Fig. 1.

The measured three-dimensional time series were
analysed according to the algorithm described above.
The determined deterministic dynamics – expressed

Fig. 2. Illustration of the investigated electric circuit. The structure
of the dynamics is a chaotic oscillator with dynamical noise.



( )R. Friedrich et al.rPhysics Letters A 271 2000 217–222220

Ž .Fig. 3. Cuts of the function g x reconstructed from experimental
Ž .data of the electric circuit illustrated in Fig. 2 in comparison

with the expected functions according to the known differential
Ž . Ž . Ž . Ž Ž . Ž ..Eqs. 4 – 6 . In part a the cut g x , x , g x , x , x s0 is1 1 2 2 1 2 3

shown as two-dimensional vector field. Thick arrows represent
values determined by data analysis, thin arrows represent the
theoretically expected values. In areas of the state space where the
trajectory did not go during the measurement no estimated values

Ž .for the functions exist. Figure b shows the one dimensional cut
Ž .g x , x s0 . Points represent values estimated numerically by1 1 2

data analysis. Additionally, the affiliated theoretically curve is
printed, as well.

by the deterministic part of the evolution equations –
corresponds to a vector field in the three-dimensional
state space. For presentation of the results, cuts of

Ž .lower dimension have been generated. Part a of
Fig. 3 illustrates the vector field

g x , x , g x , x , x s0Ž . Ž .Ž .1 1 2 2 1 2 3

of the reconstructed deterministic parts affiliated with
Ž . Ž .4 , 5 . Furthermore, the one-dimensional curve

Ž . Ž .g x , x s0 is drawn in part b . Additionally to1 1 2

the numerically determined results, found by data
Žanalysis, the expected vector field and curve Eqs.

Ž . Ž ..4 , 5 are shown for comparison. A good agree-
ment can be recognized.

4. Analysis of tremor time series

In the second example, data originating from neu-
rophysiology are investigated. Time series of hand
tremor have been recorded in normal subjects with

Ž .physiological tremor PT , in patients with essential
Ž .tremor ET and in patients suffering from Parkin-

Ž .son’s disease PD . The data sets were measured by
a lightweight piezoresistive accelerometer with a
sampling rate of 800 Hz. The outstretched hand was
supported at the wrist. For the analysis 24 000 data
points per experiment were used. The data sets were
scaled to variance 1.

It is assumed that the underlying dynamics of the
Ž .measured time series X t can be expressed by a1

Ž .two-dimensional Langevin equation 1 . Using a time
Ž .delay method a second time series X t was created2
Ž .out of the measured time series X t . Afterwards,1

the algorithm described above was applied. Up to
now 20 data sets have been investigated, measured at
patients whose disease can be clearly classified within
one of the three groups: physiological tremor, essen-
tial tremor and Parkinson’s disease. Further data sets
will be investigated, but already now a clear struc-
ture of the dynamic behaviour appears. Typical re-
sults of the analysis for the three tremor groups
together with extracts of the investigated time series
can be seen in Fig. 4.

Whereas the deterministic parts of the dynamics
in the case of physiological tremor can be described
as a fixed point with large damping and weak rota-
tion, the deterministic parts of the dynamics in the
case of essential tremor are characterised by a fixed

Ž .Fig. 4. Typical results of an analysis of tremor data achieved by the presented algorithm. In part a variance normalised accelerometer data
Ž . Ž .from a normal subject with physiological tremor was investigated, in part b from a patient with essential tremor and in part c from a

patient suffering from Parkinson’s disease. In every part a subsequence of the used time series and the numerical results for the deterministic
parts of the dynamics, drawn as vector diagram, are shown. The curves are trajectories integrated along these vector fields. Whereas in part
Ž . Ž .a and b the underlying deterministic parts of the total dynamics can be described as fixed points the deterministic parts of the dynamics
in the case of Parkinson’s disease are characterised as periodic limit cycle. The dynamics of physiological and essential tremor can be
separated by their damping, i.e. the number of cyclings of the trajectory on its way to the fixed point.
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point, as well, but with much weaker damping and
larger rotation resulting in a lower inwards spiralling
motion. In the case of Parkinson’s disease in con-
trast, the deterministic parts of the dynamics are
governed by limit cycles. The result of the analysis
concerning the physiological tremor is in accordance
with earlier studies on model equations for the dy-

w xnamics of physiological tremor. In Ref. 10 it was
shown that these dynamics can be explained by an

Ž .AR 2 process driven by the uncorrelated firing of
motoneurons in the arm muscles.

5. Conclusions

In this letter a method is presented which enables
one to extract the underlying dynamic equations
from observed data. It is possible to estimate the
deterministic and the stochastic parts of this dynam-
ics.

For validation, the method was applied to data
from a chaotic electric circuit, first. The dynamic
equations of this physical system were known and
allowed a comparison of numerically determined and
expected results.

Furthermore, the algorithm was applied to tremor
data measured in normal subjects with physiological
tremor, patients with essential tremor and patients
with Parkinson’s disease. The results allow a distinc-
tion of the different diseases. As this method allows

a better understanding of the underlying dynamics of
tremors more insights into their pathophysiology are
expected.

Concluding, it is expected that the presented
method will have a huge field of possible applica-
tions in science and might become a new standard
tool in the analysis of time series of nonlinear,
complex systems.
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