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Abstract

A stochastic model is proposed to reproduce
synthetically the power production of a wind
energy converter (WEC) from any given wind
measurement. The structure of the model
aims towards the high-frequency dynamics
of the conversion from wind speed to power
output. These dynamics appear to be a su-
perposition of an attractive power curve plus
some additional fluctuations stemming from
wind turbulence. These adversary dynamics
can be characterized through respectively a
drift and a diffusion matrix. These two matri-
ces can be inserted into a stochastic equation
named the Langevin equation, which can
generate a time series of power output from
a given time series of wind speed. For this
paper, the computation is performed and the
time series of power output measured and
modeled are compared. Various statistical
tests are presented. It can be concluded that
the stochastic model reproduces quantita-
tively well various complex statistics observed
on measurements. The tests performed in-
volve ten-minute average values, ten-minute
standard deviations, as well as the spectrum
and increment PDFs. Beyond the standard
ten-minute statistics usually considered, the
fast gusts measured in high-frequency are
also modeled. Its fast and flexible structure
could make the stochastic method useful for
a realistic modeling of the intermittent power
production of WECs.
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1 Introduction

The atmospheric wind in which wind energy
converters (WECs) operate is a complex pro-
cess [1]. Turbulent structures are observed
on short time scales in high-frequency wind
measurements. While these short-time fluc-
tuations should not affect strongly the annual
energy production, they generate important
alternating loads on the entire structure of
every WEC. Thus raises the question of the
negative impact of turbulence on downtimes
and on the overall lifetime of a WEC. In par-
allel, such turbulent wind makes any WEC
a fluctuating, intermittent source of energy.
Wind gusts are transformed into intermittent,
rapidly-changing “power gusts”. When mea-
sured at high-frequency (≈ 1Hz ), the power
production fed into the electric grid by a sin-
gle WEC is a complex, intermittent signal.

Wind turbulence cannot be controlled or re-
duced at will. The site topography and sur-
face roughness have a direct impact on the
turbulence intensity, making some sites less
turbulent than others, mainly offshore sites.
Our rising dependence on wind energy calls
for a better understanding of such phenom-
ena, as well as reliable models. However, the
staggering level of complexity of turbulent ef-
fects makes modeling a complex task. On the
one hand, simple models typically neglect the
high-order statistics that govern gusts. On the
other hand, advanced CFD codes demand so
much computer resources that they cannot
model entire WECs (yet).

In this paper, a stochastic model is pro-
posed as an alternative. The model con-
verts a high-frequency time series of wind
speed u(t) into a high-frequency time se-
ries of power output P (t), reproducing the
conversion process performed by a WEC.



The stochastic theory used allows for a fast
model that reproduces quantitatively well the
statistics observed on power output measure-
ments. In a first step, the WEC must be char-
acterized appropriately. In a second step, this
characterization, in the form of the drift and
diffusion matrix D(1) and D(2) is inserted into
a stochastic Langevin equation. A synthetic
time series of the power output can then be
generated by solving the Langevin equation
iteratively.

2 Step 1: characterizing the
WEC dynamics

2.1 Data requirements

In order to properly reproduce the power pro-
duction of a WEC, the stochastic model must
be parametrized. The necessary parameters
can be extracted from a measurement per-
formed beforehand on the WEC of interest.
The variables to be measured are the simul-
taneous time signals of wind speed u(t) and
of net power output P (t) of the WEC. The
time series should have a sampling frequency
in the order of 1Hz , as displayed in figure
1. The intermittent, gusty nature of the wind
is observed on short time scales. This jus-
tifies the need for high-frequency measure-
ments that contain detailed information about
the fast fluctuations, and that is unavailable
with the standard ten-minute averaging tech-
nique used for measurement. Modeling such
complex statistics is one important goal of the
method presented.

In order to represent the dynamics of the
WEC accurately, the original measurement
should be long enough to span all necessary
wind conditions1. The wind speed u(t) should
be measured at hub height from a met mast,
as described by the IEC power curve stan-
dard [2]. Additional data requirements and
corrections described in the IEC norm may
be applied here for optimal results. Only the

1How long is enough for a good measurement de-
pends on the wind conditions. A first guess for the nec-
essary duration is in the order of two weeks. Unlike
procedures based on ten-minute averaging, the use of
high frequency data allows for a faster convergence. It
is however expected that longer measurements yields
better modeling results.
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Figure 1: Example of a simultaneous mea-
surement of wind speed u(t) and power out-
put P (t) at frequency 1Hz . The measure-
ment was performed on an operating multi-
MW WEC. It is not the dataset used later on.

sampling frequency of the recorded data must
be in the order of 1Hz instead of the ten-
minute averaging applied in the IEC norm.
The stochastic model is by nature related to
power curve methods, as it aims to convert
wind speed into power output. This intrin-
sic connection makes it a flexible tool which
can potentially be applied to any WEC design
that displays a clearly defined power curve. It
has also been shown to be well applicable to-
gether with different wind measurement prin-
ciples, such as LIDAR [3] or nacelle anemom-
etry measurements.
The data set used contains 900 000 data-
points, sampled at 2.5Hz. This corresponds
to a measurement period of approximately 4
days. The wind speed is an actual wind mea-
surement on a met mast at the GROWIAN
site in Germany [4, 5]. However, the time se-
ries labeled as measurement time series of
power P (t) used in this paper was obtained
from a computer model for a 1.5MW WEC.
This other model is a mechanical WEC model
named FAST [6]. This model was already ac-
cepted to model well the dynamics of a WEC
[7]. The reason for using this data is that high-
frequency measurements of wind speed and
power output are difficult to obtain. When-
ever measurement power is mentioned in this



paper, it should be understood as output of
the mechanical model FAST (and input for
the stochastic model). An extension to real
WEC data is however straightforward when-
ever measurement data is available, and the
result is expected to hold valid.

2.2 Characterizing the dynamics

The stochastic model follows the idea that the
power output P (t) can be approximated by
a stochastic differential equation named the
Langevin equation [8]

d

dt
P (t) = D(1)(P ;u)+

√
D(2)(P ;u)·Γ(t) , (1)

where D(1)(P ;u) and D(2)(P ;u) are called re-
spectively the drift and diffusion fields, and
Γ(t) is a Gaussian white noise with mean
value 〈Γ(t)〉 = 0 and variance 〈Γ2(t)〉 = 2.
The stochastic approach consists in solving
the Langevin equation, as further described
in section 3. Because Γ(t) is a set of ran-
dom numbers, the term

√
D(2)(P ;U)·Γ(t) is a

stochastic, i.e. random term, andD(1)(P ;u) is
a deterministic term in the Langevin equation
(1). The drift field D(1) represents the dynam-
ical response of the WEC, while the diffusion
field D(2) quantifies random turbulent fluctua-
tions together with Γ(t), as explained below.
An essential aspect of the method is that the
two fields D(1) and D(2) can be estimated
directly from measurement data (sampled at
the order of 1Hz ), as follows [8, 9]

D(n)(P ;u) =
1

n!
lim
τ→0

1

τ

〈[P (t+ τ)− P (t)]n|P (t) = P ;u(t) = u〉 , (2)

where 〈 | 〉 denotes the conditional ensem-
ble average. To this end, the calculation is
conditioned over the two-dimensional state
space {P ;u}. In a practical sense, the
fields D(n)(P ;u) are two-dimensional matri-
ces computed in each discrete bin of the two-
dimensional space {P ;u}. An illustration of
the drift field D(1) is given in figure 2.
The values of the drift field (matrix) D(1) are
plotted using arrows in figure 2. The drift
is plotted using a blue arrow when positive,
i.e. D(1)(P ;u) > 0, indicating that in these
regions the power output P (t) increases (on
average). The inverse situation happens for
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Figure 2: Drift field D(1)(P ;u) represented
qualitatively using arrows. The local value of
drift D(1)(P ;u) is represented by the direction
and length of each arrow, while the color also
indicates the direction of the drift. The black
dots represent the stable fixed points where
D(1)(P ;u) = 0, also called the Langevin
power curve [7, 10]. The binning chosen here
was 0.5m/s for u and 50 bins for P . The power
is normalized by rated power Pr = 1500kW .

the red arrows, where the drift is negative,
and the power output decreases. Figure 2
is a map that illustrates how the power pro-
duction changes for each combination of wind
speed and power. The WEC permanently
adapts its power production to match with an
ever-changing turbulent wind. While the IEC
power curve gives the average power corre-
sponding to each wind speed, the Langevin
power curve defined as D(1) = 0 (black dots
in figure 2) represents the stable, attractive
dynamics of the WEC2. For information, D(1)

and D(2) could be estimated only in the bins
where measurement data was recorded. The
white regions in figure 2 represent these re-
gions where the data never went. This is not a
limitation to the model because these regions
are not of interest, as the WEC never explores
them.
Although the Langevin and IEC power curves

2Additionally, D(1)(P ) must have a decreasing slope
around the stable fixed points. An increasing slope
would indicate an unstable fixed point, when only sta-
ble fixed points are of interest here.



have a similar shape [11], the Langevin power
curve brings additional meaning as it is the
dynamical attractor of the WEC in the two-
dimensional space {P ;u}. Following this re-
sult, the WEC dynamics can be understood
in a simple way. The power production is at-
tracted towards the stable fixed points where
D(1)(P ;u) = 0, i.e. the Langevin power
curve [7, 10]. Under constant, laminar wind
conditions, the WEC would relax towards the
Langevin power curve. However, the turbulent
wind fluctuations endlessly drive the system
away from the stable fixed points. The under-
lying dynamics of the conversion from wind
speed to power output can then be separated
into an attractive power curve and the addi-
tional turbulent fluctuations driving the system
away from the stable power curve. This corre-
sponds exactly to the structure of the stochas-
tic model, where the drift field D(1) repre-
sents the attractor displayed in figure 2, and
where the diffusion field D(2) quantifies ad-
ditional, random fluctuations stemming from
turbulence3. As the WEC dynamics are char-
acterized, the estimated drift and diffusion
fields (matrices) can be used in the Langevin
equation to simulate the power output P (t) for
any given wind speed u(t), as is introduced in
section 3.

3 Step 2: modeling the WEC
power production

The two matrices D(1)(P ;u) and D(2)(P ;u)
carry the necessary information about the
conversion from wind speed u(t) to power
output P (t) at high-frequency. It should be
noted that the goal of such model is not to
reach an exact reproduction of the power time
series, but rather to model a time series that
has the same statistical properties. The use
of a random noise Γ(t) makes an absolute,
exact reproduction impossible. It is through
the proper estimation of the D(n) fields that
the correct statistics can be modeled. Their
proper estimation is detailed in section 2.2.
The two fields (matrices) must be inserted

3The authors would like to note that the stochastic
theory presented here was successfully applied to other
systems such as airfoil lift dynamics [12] or turbulent
flows [13]. Numerous complex systems were studied in
the same manner in various scientific fields.

into the Langevin equation that becomes a
model for the power output P ?(t) of the WEC.
For clarity of reading, the power signal orig-
inally measured on the WEC will be further
labeled P (t), and the power modeled by the
Langevin equation P ?(t). The Langevin equa-
tion (1) introduced in section 2.2 is valid for a
continuous process. While such process ex-
ists only in a mathematical sense, a concrete
application requires to adapt the Langevin
equation to a form discrete in time, i.e. de-
fined at every discrete time step τ as follows

P ?(t+ τ) = P ?(t) + τ ·D(1)(P ?(t);u(t))

+
√
τ ·D(2)(P ?(t);u(t)) · w(t) . (3)

According to stochastic calculus, the noise
term Γ(t) in (1) has to be integrated over
the time step τ , leading to the Wiener noise√
τ · w(t), where w(t) is delta-correlated with

a variance of 2 (cf. [8], section 3.6). The sam-
pling time τ should be chosen similar to the
sampling time of the measurement time se-
ries used in section 2.1 to estimate the fields.
Additionally, the wind speed u(t) used in the
discrete Langevin equation (3) should also be
sampled with a similar sampling time. The
reason is that the dynamics represented by
the two fields is characteristic of the sam-
pling rate of the measurement time series
introduced in section 2.1. Using the fields
on a very different sampling time makes lit-
tle sense as they do not characterize the dy-
namics on this time scale. For consistency, all
sampling rates of all signals used should be
the same (or at least of similar order). For in-
formation, the results displayed in this paper
were obtained using τ = 0.4s (for a sampling
frequency f = 1/τ = 2.5Hz).
Γ(t) is a Gaussian white noise. This means
that it is a series of independent random num-
bers that are Gaussian distributed. Its mean
value must be 〈Γ(t)〉 = 0 and its variance
〈Γ2(t)〉 = 2 following [8]. Such random signal
can be generated fast and easily from most
scientific programming softwares. For exam-
ple, 107 such data points are generated in less
than 1s on a standard desktop computer by
the computing software R [14]. For informa-
tion, all calculations were performed using R
in this project.
Finally, the initial condition P ?(t = 0) influ-
ences only slightly the future evolution as



P ?(t) will adjust rapidly to the corresponding
wind speed u(t)4. The model can then be run
unambiguously to simulate P ?(t).
Because the model must first be constructed
from a measurement of u(t) and P (t), the
user can always compare the measured sig-
nal P (t) with the modeled signal P ?(t). To test
the validity of the model, a visual comparison
of P and P ? is given in figures 3 and 4.
One can observe in figure 3 that the stochas-

Figure 3: Comparison of P (t) (black) and
P ?(t) (red) for 100 hours at sampling fre-
quency 2.5Hz.

tic model manages to reproduce the mea-
surement signal, at least in a visually sat-
isfying manner. Here, the time series con-
tain so many data points that it is impossi-
ble to really distinguish the two signals. How-
ever, P ?(t) seemingly spans the same range
at P (t), which already guarantees that the
model spans the correct values in a gross
way. A detailed statistical comparison of the
two time series is provided in section 4.

4 Statistical validation of the
model

4.1 Ten-minute statistics

The time series displayed in figure 3 are visu-
ally similar, but this is not sufficient to validate

4An optimal initial value is P ?(t = 0) = PIEC(u(t =
0) ), where PIEC (u) is the IEC power curve of the WEC.

the stochastic model. A statistical compari-
son of the measured and modeled time series
P (t) and P ?(t) is detailed in this section. One
can decompose the series P (t) into

P (t) = 〈P 〉10min + Premain(t) , (4)

and similarly for P ?(t). 〈P 〉10min repre-
sents the ten-minute average of P (t), and
Premain(t) gives the remaining fluctuations
around the ten-minute average. While
〈P 〉10min gives the slow ten-minute trend,
Premain(t) represents the fast fluctuations re-
sulting from turbulence.
Two comparisons are performed:

• the ten-minute average 〈P 〉 characterizes
the evolution on a long time scale (10
minutes). While this paper focuses more
directly on faster fluctuations, it is impor-
tant to reproduce the ten-minute evolu-
tion. The ratio 〈P ?〉10min/〈P 〉10min quan-
tifies the quality of the model to repro-
duce the power production on the long
time scale of 10 minutes;

• the ten-minute standard deviation
sd(P )10min characterizes the magnitude
of the remaining fluctuations5. The ratio
sd(P ?)10min/sd(P )10min quantifies the
quality of the model to reproduce the
fast, turbulent fluctuations in terms of
magnitude.

Figure 4 illustrates visually the ability of the
stochastic model to reproduce the power out-
put time series on shorter time periods. The
model manages to reproduce the power pro-
duction of the WEC on both the slow trend,
and also on the additional fluctuations. One
can see in figure 4(b) that every ten minutes,
the average and standard deviation of the two
series are similar. Once the model was ex-
ecuted, and the entire time series of P ?(t)
was generated, one can calculate all the ten-
minute ratios of averages and standard devia-
tions. The total ratio is defined as the average
of all the ten-minute ratios. It is calculated for
both the average and the standard deviation.
The final ratios obtained are displayed in table
4.1.

5The standard deviation denoted sd(P )10min in this
paper is calculated following sd(P )10min =

〈
(P −

〈P 〉10min)
2
〉
10min

.
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Figure 4: (a) Time series of P (t) (black) and
P ?(t) (red) for 30 minutes. (b) Ten-minute av-
erages (full lines) and ± ten-minute standard
deviations (dashed lines) with corresponding
colors.

Table 1: Total ratio of ten-minute averages
and of ten-minute standard deviations.

total
〈P ?〉10min

〈P 〉10min
total

sd(P ?)10min

sd(P )10min

1.061 1.005

In the example presented, the ten-minute
average of power is over-estimated by 6.1%,
and the ten-minute standard deviation of
power is over-estimated by 0.5%. These val-
ues can vary slightly, due to the randomness
of the model. It should be noted that an opti-
mization loop was applied to reach this result.
The original ratio of standard deviations was
in the order of 1.25 (over-estimation by 25%),
due to natural deviations in the estimation of
D(2), which is typically over-estimated6. D(2)

6Such deviations are expected [15] as equation (2)
applies in theory on continuous processes. However,

was reduced in small steps until the total ra-
tios presented in table 4.1 reached the de-
sired value. The final value of D(2) is retained
as the correct value for the model. As the ten-
minute mean value is over-estimated by 6.1%,
the optimization technique should be further
improved.

4.2 Two-point statistics

All statistical quantities presented above are
one-point statistics [16]. Two-point statistics
such as the power spectral density (more
commonly called spectrum) S(f) are calcu-
lated following [17] for the two time series and
compared in figure 5.
The overall shape of the spectrum is repro-

Figure 5: Power spectral density S(f) of P
(black) and P ? (red). S(f) is normalized by
the variance σ2 of the time series.

duced by the stochastic model. The most
striking deviation is observed at frequency
f ≈ 1Hz , which corresponds to a 1Hz oscilla-
tion in the measured time series P (t). While
it seems possible that the peak observed
here may be caused by the blades passing
the tower of the WEC, no clear evidence
was possible within the present study. This
oscillation is not reproduced by the model,

the time series used in section 2 are imperfect due to
measurement noise and to a finite sampling rate. A
continuous process cannot be measured physically, and
remains a purely mathematical object, making the opti-
mization procedure necessary in many cases.



but could possibly be added to the model as
a succeeding step.

An additional two-point quantity is the
power increment Pτ (t) = P (t + τ) − P (t),
where τ is a given time scale. Pτ represents
the change in power over a given time scale
τ . When plotting the probability density
function (PDF) p(Pτ ) of the power increment
Pτ , one can quantify the occurrence of gusts
on the given time scale τ [16]. The increment
PDF is given for various scales in figure 6.

Figure 6 illustrates the ability of the model
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Figure 6: PDF p(Pτ ) of power in-
crements Pτ for various scales τ =
(0.4, 0.8, 1.6, 6.4, 25.6, 26214.4)s (bottom
to top curves shifted upwards for clarity). The
red full lines are estimated from P ? and the
black dashed lines from P . The y-axis is
represented using a logarithmic scale.

to generate intermittent power gusts. For
example, changes in power production up
to +100kW and −100kW within 0.8s occur,
as their probability is more than zero. This
aspect is especially important on shorter time
scales (represented by the lowest curves in
figure 6) when fast wind gusts are converted
into fast power gusts. The model does not
create as many gusts on the shortest time
scale (lowest curve) as deviations between
the two curves can be seen. Improvements
could be performed in this direction. Overall,
the stochastic model still displays a valuable
result as power gusts are mostly well repro-

duced, but maybe not often enough for the
very fast ones on the shortest time scale. All
results presented in figures 3 to 6 show a
good agreement between the measured time
series and the result of the stochastic model.
For such, it is concluded that the stochastic
model reproduces the intended statistics.

5 Conclusion

A stochastic model is introduced for the power
production of a WEC. This model can gen-
erate a high-frequency time series of power
output from a high-frequency time series of
wind speed. In a first step, the dynamics of
the particular WEC are brought into the model
from an initial measurement of wind speed
and simultaneous power output. From this
calculation in section 2.2, the drift field D(1)

gives a visual representation of the WEC dy-
namics at high frequency. The conversion
from wind speed to power output appears as
the superposition of an attractive power curve
plus some additional fluctuations due to tur-
bulence. The WEC would tend towards the
power curve if the wind inflow were laminar,
but the turbulent fluctuations always push the
dynamics away from the power curve. While
the drift field D(1) represents this attractive
power curve, the diffusion field D(2) quanti-
fies additional random fluctuations due to tur-
bulence.

In a second step, the stochastic Langevin
equation is solved using the two fields previ-
ously estimated. It is solved here using the
wind speed time series used to estimate the
fields, such that a direct comparison between
the measured and modeled power time se-
ries is possible. While a first validation of the
model can be done comparing visually the
time series, a statistical comparison is per-
formed in section 4. As a result of this test, the
stochastic model reproduces the ten-minute
average values of power with deviations of or-
der ≈ 6%. This should be further improved
through a more advanced optimization tech-
nique. The ten-minute standard deviations of
power deviate from the measurement by less
than 1%. This result is obtained using an op-
timization loop, that could be run further to
reach even better correspondence. These re-
sults confirm the visual similarity of the two



time series.
Additionally, two-point statistics are inves-

tigated. The spectrum of the power output
time series is estimated. The spectrum of the
modeled series displays a qualitative agree-
ment with the measurement series, although
a peak at ≈ 1Hz is omitted. This peak is at-
tributed to the shadow effect of the tower on
the rotating blades, and could possibly be in-
serted manually into the model. The PDF of
power increments are also investigated. Sat-
isfying results are obtained on a large range
of time scales, indicating that the model repro-
duces the power gusts observed on measure-
ments. The turbulent structures observed on
power output measurements are reproduced
qualitatively well.

Due to its simple structure, such model can
be run fast on any conventional computer.
The entire computation for 4 days of data at
2.5Hz was performed within 20 minutes on a
desktop machine, using the interpreting lan-
guage R. An implementation to a compiling
language would greatly reduce the computa-
tion time, making the model even more flexi-
ble. This fast and flexible structure makes a
power prediction model on the scale of wind
farms (or larger) possible. One would need
however a high-frequency measurement of
wind speed to feed the model. Current re-
search aims towards a similar model that
could perform without high-frequency time se-
ries of wind speed, but simply using ten-
minute average wind speed and turbulence
intensity. A fast modeling of power produc-
tion, power fluctuations and power "gusts"
could then be performed for any WEC in any
location based on only a wind speed mea-
surement, or meteo model. A similar model
for mechanical loads is also under develop-
ment.
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